Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+3\right)\left(7x+3\right)=\left(5x-3\right)\left(5x-3\right)
Variable x cannot be equal to any of the values -3,\frac{3}{5} since division by zero is not defined. Multiply both sides of the equation by \left(5x-3\right)\left(x+3\right), the least common multiple of 5x-3,x+3.
\left(x+3\right)\left(7x+3\right)=\left(5x-3\right)^{2}
Multiply 5x-3 and 5x-3 to get \left(5x-3\right)^{2}.
7x^{2}+24x+9=\left(5x-3\right)^{2}
Use the distributive property to multiply x+3 by 7x+3 and combine like terms.
7x^{2}+24x+9=25x^{2}-30x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-3\right)^{2}.
7x^{2}+24x+9-25x^{2}=-30x+9
Subtract 25x^{2} from both sides.
-18x^{2}+24x+9=-30x+9
Combine 7x^{2} and -25x^{2} to get -18x^{2}.
-18x^{2}+24x+9+30x=9
Add 30x to both sides.
-18x^{2}+54x+9=9
Combine 24x and 30x to get 54x.
-18x^{2}+54x+9-9=0
Subtract 9 from both sides.
-18x^{2}+54x=0
Subtract 9 from 9 to get 0.
x=\frac{-54±\sqrt{54^{2}}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, 54 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-54±54}{2\left(-18\right)}
Take the square root of 54^{2}.
x=\frac{-54±54}{-36}
Multiply 2 times -18.
x=\frac{0}{-36}
Now solve the equation x=\frac{-54±54}{-36} when ± is plus. Add -54 to 54.
x=0
Divide 0 by -36.
x=-\frac{108}{-36}
Now solve the equation x=\frac{-54±54}{-36} when ± is minus. Subtract 54 from -54.
x=3
Divide -108 by -36.
x=0 x=3
The equation is now solved.
\left(x+3\right)\left(7x+3\right)=\left(5x-3\right)\left(5x-3\right)
Variable x cannot be equal to any of the values -3,\frac{3}{5} since division by zero is not defined. Multiply both sides of the equation by \left(5x-3\right)\left(x+3\right), the least common multiple of 5x-3,x+3.
\left(x+3\right)\left(7x+3\right)=\left(5x-3\right)^{2}
Multiply 5x-3 and 5x-3 to get \left(5x-3\right)^{2}.
7x^{2}+24x+9=\left(5x-3\right)^{2}
Use the distributive property to multiply x+3 by 7x+3 and combine like terms.
7x^{2}+24x+9=25x^{2}-30x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-3\right)^{2}.
7x^{2}+24x+9-25x^{2}=-30x+9
Subtract 25x^{2} from both sides.
-18x^{2}+24x+9=-30x+9
Combine 7x^{2} and -25x^{2} to get -18x^{2}.
-18x^{2}+24x+9+30x=9
Add 30x to both sides.
-18x^{2}+54x+9=9
Combine 24x and 30x to get 54x.
-18x^{2}+54x=9-9
Subtract 9 from both sides.
-18x^{2}+54x=0
Subtract 9 from 9 to get 0.
\frac{-18x^{2}+54x}{-18}=\frac{0}{-18}
Divide both sides by -18.
x^{2}+\frac{54}{-18}x=\frac{0}{-18}
Dividing by -18 undoes the multiplication by -18.
x^{2}-3x=\frac{0}{-18}
Divide 54 by -18.
x^{2}-3x=0
Divide 0 by -18.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
Simplify.
x=3 x=0
Add \frac{3}{2} to both sides of the equation.