Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7xx=8832x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 92x.
7x^{2}=8832x
Multiply x and x to get x^{2}.
7x^{2}-8832x=0
Subtract 8832x from both sides.
x\left(7x-8832\right)=0
Factor out x.
x=0 x=\frac{8832}{7}
To find equation solutions, solve x=0 and 7x-8832=0.
x=\frac{8832}{7}
Variable x cannot be equal to 0.
7xx=8832x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 92x.
7x^{2}=8832x
Multiply x and x to get x^{2}.
7x^{2}-8832x=0
Subtract 8832x from both sides.
x=\frac{-\left(-8832\right)±\sqrt{\left(-8832\right)^{2}}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -8832 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8832\right)±8832}{2\times 7}
Take the square root of \left(-8832\right)^{2}.
x=\frac{8832±8832}{2\times 7}
The opposite of -8832 is 8832.
x=\frac{8832±8832}{14}
Multiply 2 times 7.
x=\frac{17664}{14}
Now solve the equation x=\frac{8832±8832}{14} when ± is plus. Add 8832 to 8832.
x=\frac{8832}{7}
Reduce the fraction \frac{17664}{14} to lowest terms by extracting and canceling out 2.
x=\frac{0}{14}
Now solve the equation x=\frac{8832±8832}{14} when ± is minus. Subtract 8832 from 8832.
x=0
Divide 0 by 14.
x=\frac{8832}{7} x=0
The equation is now solved.
x=\frac{8832}{7}
Variable x cannot be equal to 0.
7xx=8832x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 92x.
7x^{2}=8832x
Multiply x and x to get x^{2}.
7x^{2}-8832x=0
Subtract 8832x from both sides.
\frac{7x^{2}-8832x}{7}=\frac{0}{7}
Divide both sides by 7.
x^{2}-\frac{8832}{7}x=\frac{0}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{8832}{7}x=0
Divide 0 by 7.
x^{2}-\frac{8832}{7}x+\left(-\frac{4416}{7}\right)^{2}=\left(-\frac{4416}{7}\right)^{2}
Divide -\frac{8832}{7}, the coefficient of the x term, by 2 to get -\frac{4416}{7}. Then add the square of -\frac{4416}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8832}{7}x+\frac{19501056}{49}=\frac{19501056}{49}
Square -\frac{4416}{7} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{4416}{7}\right)^{2}=\frac{19501056}{49}
Factor x^{2}-\frac{8832}{7}x+\frac{19501056}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4416}{7}\right)^{2}}=\sqrt{\frac{19501056}{49}}
Take the square root of both sides of the equation.
x-\frac{4416}{7}=\frac{4416}{7} x-\frac{4416}{7}=-\frac{4416}{7}
Simplify.
x=\frac{8832}{7} x=0
Add \frac{4416}{7} to both sides of the equation.
x=\frac{8832}{7}
Variable x cannot be equal to 0.