Evaluate
8\sqrt{874}+\frac{6465446543}{16}\approx 404090645.445428014
Factor
\frac{128 \sqrt{874} + 6465446543}{16} = 404090645.445428
Share
Copied to clipboard
\frac{79}{16}+4\sqrt{3496}+437^{2}\times 46^{2}
Multiply 46 and 76 to get 3496.
\frac{79}{16}+4\times 2\sqrt{874}+437^{2}\times 46^{2}
Factor 3496=2^{2}\times 874. Rewrite the square root of the product \sqrt{2^{2}\times 874} as the product of square roots \sqrt{2^{2}}\sqrt{874}. Take the square root of 2^{2}.
\frac{79}{16}+8\sqrt{874}+437^{2}\times 46^{2}
Multiply 4 and 2 to get 8.
\frac{79}{16}+8\sqrt{874}+190969\times 46^{2}
Calculate 437 to the power of 2 and get 190969.
\frac{79}{16}+8\sqrt{874}+190969\times 2116
Calculate 46 to the power of 2 and get 2116.
\frac{79}{16}+8\sqrt{874}+404090404
Multiply 190969 and 2116 to get 404090404.
\frac{79}{16}+8\sqrt{874}+\frac{6465446464}{16}
Convert 404090404 to fraction \frac{6465446464}{16}.
\frac{79+6465446464}{16}+8\sqrt{874}
Since \frac{79}{16} and \frac{6465446464}{16} have the same denominator, add them by adding their numerators.
\frac{6465446543}{16}+8\sqrt{874}
Add 79 and 6465446464 to get 6465446543.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}