Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\begin{array}{l}\phantom{526)}\phantom{1}\\526\overline{)789}\\\end{array}
Use the 1^{st} digit 7 from dividend 789
\begin{array}{l}\phantom{526)}0\phantom{2}\\526\overline{)789}\\\end{array}
Since 7 is less than 526, use the next digit 8 from dividend 789 and add 0 to the quotient
\begin{array}{l}\phantom{526)}0\phantom{3}\\526\overline{)789}\\\end{array}
Use the 2^{nd} digit 8 from dividend 789
\begin{array}{l}\phantom{526)}00\phantom{4}\\526\overline{)789}\\\end{array}
Since 78 is less than 526, use the next digit 9 from dividend 789 and add 0 to the quotient
\begin{array}{l}\phantom{526)}00\phantom{5}\\526\overline{)789}\\\end{array}
Use the 3^{rd} digit 9 from dividend 789
\begin{array}{l}\phantom{526)}001\phantom{6}\\526\overline{)789}\\\phantom{526)}\underline{\phantom{}526\phantom{}}\\\phantom{526)}263\\\end{array}
Find closest multiple of 526 to 789. We see that 1 \times 526 = 526 is the nearest. Now subtract 526 from 789 to get reminder 263. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }263
Since 263 is less than 526, stop the division. The reminder is 263. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}