Evaluate
\frac{15683}{3}\approx 5227.666666667
Factor
\frac{15683}{3} = 5227\frac{2}{3} = 5227.666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)78415}\\\end{array}
Use the 1^{st} digit 7 from dividend 78415
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)78415}\\\end{array}
Since 7 is less than 15, use the next digit 8 from dividend 78415 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)78415}\\\end{array}
Use the 2^{nd} digit 8 from dividend 78415
\begin{array}{l}\phantom{15)}05\phantom{4}\\15\overline{)78415}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)9}3\\\end{array}
Find closest multiple of 15 to 78. We see that 5 \times 15 = 75 is the nearest. Now subtract 75 from 78 to get reminder 3. Add 5 to quotient.
\begin{array}{l}\phantom{15)}05\phantom{5}\\15\overline{)78415}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)9}34\\\end{array}
Use the 3^{rd} digit 4 from dividend 78415
\begin{array}{l}\phantom{15)}052\phantom{6}\\15\overline{)78415}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)9}34\\\phantom{15)}\underline{\phantom{9}30\phantom{99}}\\\phantom{15)99}4\\\end{array}
Find closest multiple of 15 to 34. We see that 2 \times 15 = 30 is the nearest. Now subtract 30 from 34 to get reminder 4. Add 2 to quotient.
\begin{array}{l}\phantom{15)}052\phantom{7}\\15\overline{)78415}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)9}34\\\phantom{15)}\underline{\phantom{9}30\phantom{99}}\\\phantom{15)99}41\\\end{array}
Use the 4^{th} digit 1 from dividend 78415
\begin{array}{l}\phantom{15)}0522\phantom{8}\\15\overline{)78415}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)9}34\\\phantom{15)}\underline{\phantom{9}30\phantom{99}}\\\phantom{15)99}41\\\phantom{15)}\underline{\phantom{99}30\phantom{9}}\\\phantom{15)99}11\\\end{array}
Find closest multiple of 15 to 41. We see that 2 \times 15 = 30 is the nearest. Now subtract 30 from 41 to get reminder 11. Add 2 to quotient.
\begin{array}{l}\phantom{15)}0522\phantom{9}\\15\overline{)78415}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)9}34\\\phantom{15)}\underline{\phantom{9}30\phantom{99}}\\\phantom{15)99}41\\\phantom{15)}\underline{\phantom{99}30\phantom{9}}\\\phantom{15)99}115\\\end{array}
Use the 5^{th} digit 5 from dividend 78415
\begin{array}{l}\phantom{15)}05227\phantom{10}\\15\overline{)78415}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)9}34\\\phantom{15)}\underline{\phantom{9}30\phantom{99}}\\\phantom{15)99}41\\\phantom{15)}\underline{\phantom{99}30\phantom{9}}\\\phantom{15)99}115\\\phantom{15)}\underline{\phantom{99}105\phantom{}}\\\phantom{15)999}10\\\end{array}
Find closest multiple of 15 to 115. We see that 7 \times 15 = 105 is the nearest. Now subtract 105 from 115 to get reminder 10. Add 7 to quotient.
\text{Quotient: }5227 \text{Reminder: }10
Since 10 is less than 15, stop the division. The reminder is 10. The topmost line 05227 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5227.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}