Solve for x
x=\frac{3175\sqrt{3}y}{77777}
Solve for y
y=\frac{77777\sqrt{3}x}{9525}
Graph
Share
Copied to clipboard
\frac{77777}{635\times 5}x=y\sqrt{3}
Calculate the square root of 25 and get 5.
\frac{77777}{3175}x=y\sqrt{3}
Multiply 635 and 5 to get 3175.
\frac{77777}{3175}x=\sqrt{3}y
The equation is in standard form.
\frac{\frac{77777}{3175}x}{\frac{77777}{3175}}=\frac{\sqrt{3}y}{\frac{77777}{3175}}
Divide both sides of the equation by \frac{77777}{3175}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\sqrt{3}y}{\frac{77777}{3175}}
Dividing by \frac{77777}{3175} undoes the multiplication by \frac{77777}{3175}.
x=\frac{3175\sqrt{3}y}{77777}
Divide y\sqrt{3} by \frac{77777}{3175} by multiplying y\sqrt{3} by the reciprocal of \frac{77777}{3175}.
\frac{77777}{635\times 5}x=y\sqrt{3}
Calculate the square root of 25 and get 5.
\frac{77777}{3175}x=y\sqrt{3}
Multiply 635 and 5 to get 3175.
y\sqrt{3}=\frac{77777}{3175}x
Swap sides so that all variable terms are on the left hand side.
\sqrt{3}y=\frac{77777x}{3175}
The equation is in standard form.
\frac{\sqrt{3}y}{\sqrt{3}}=\frac{77777x}{3175\sqrt{3}}
Divide both sides by \sqrt{3}.
y=\frac{77777x}{3175\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
y=\frac{77777\sqrt{3}x}{9525}
Divide \frac{77777x}{3175} by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}