Solve for x
x=18
x=-\frac{8}{9}\approx -0.888888889
Graph
Share
Copied to clipboard
\left(x-4\right)\times 77+\left(x+4\right)\times 77=9\left(x-4\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4.
77x-308+\left(x+4\right)\times 77=9\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x-4 by 77.
77x-308+77x+308=9\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x+4 by 77.
154x-308+308=9\left(x-4\right)\left(x+4\right)
Combine 77x and 77x to get 154x.
154x=9\left(x-4\right)\left(x+4\right)
Add -308 and 308 to get 0.
154x=\left(9x-36\right)\left(x+4\right)
Use the distributive property to multiply 9 by x-4.
154x=9x^{2}-144
Use the distributive property to multiply 9x-36 by x+4 and combine like terms.
154x-9x^{2}=-144
Subtract 9x^{2} from both sides.
154x-9x^{2}+144=0
Add 144 to both sides.
-9x^{2}+154x+144=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-154±\sqrt{154^{2}-4\left(-9\right)\times 144}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 154 for b, and 144 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-154±\sqrt{23716-4\left(-9\right)\times 144}}{2\left(-9\right)}
Square 154.
x=\frac{-154±\sqrt{23716+36\times 144}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-154±\sqrt{23716+5184}}{2\left(-9\right)}
Multiply 36 times 144.
x=\frac{-154±\sqrt{28900}}{2\left(-9\right)}
Add 23716 to 5184.
x=\frac{-154±170}{2\left(-9\right)}
Take the square root of 28900.
x=\frac{-154±170}{-18}
Multiply 2 times -9.
x=\frac{16}{-18}
Now solve the equation x=\frac{-154±170}{-18} when ± is plus. Add -154 to 170.
x=-\frac{8}{9}
Reduce the fraction \frac{16}{-18} to lowest terms by extracting and canceling out 2.
x=-\frac{324}{-18}
Now solve the equation x=\frac{-154±170}{-18} when ± is minus. Subtract 170 from -154.
x=18
Divide -324 by -18.
x=-\frac{8}{9} x=18
The equation is now solved.
\left(x-4\right)\times 77+\left(x+4\right)\times 77=9\left(x-4\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4.
77x-308+\left(x+4\right)\times 77=9\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x-4 by 77.
77x-308+77x+308=9\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x+4 by 77.
154x-308+308=9\left(x-4\right)\left(x+4\right)
Combine 77x and 77x to get 154x.
154x=9\left(x-4\right)\left(x+4\right)
Add -308 and 308 to get 0.
154x=\left(9x-36\right)\left(x+4\right)
Use the distributive property to multiply 9 by x-4.
154x=9x^{2}-144
Use the distributive property to multiply 9x-36 by x+4 and combine like terms.
154x-9x^{2}=-144
Subtract 9x^{2} from both sides.
-9x^{2}+154x=-144
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+154x}{-9}=-\frac{144}{-9}
Divide both sides by -9.
x^{2}+\frac{154}{-9}x=-\frac{144}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{154}{9}x=-\frac{144}{-9}
Divide 154 by -9.
x^{2}-\frac{154}{9}x=16
Divide -144 by -9.
x^{2}-\frac{154}{9}x+\left(-\frac{77}{9}\right)^{2}=16+\left(-\frac{77}{9}\right)^{2}
Divide -\frac{154}{9}, the coefficient of the x term, by 2 to get -\frac{77}{9}. Then add the square of -\frac{77}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{154}{9}x+\frac{5929}{81}=16+\frac{5929}{81}
Square -\frac{77}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{154}{9}x+\frac{5929}{81}=\frac{7225}{81}
Add 16 to \frac{5929}{81}.
\left(x-\frac{77}{9}\right)^{2}=\frac{7225}{81}
Factor x^{2}-\frac{154}{9}x+\frac{5929}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{77}{9}\right)^{2}}=\sqrt{\frac{7225}{81}}
Take the square root of both sides of the equation.
x-\frac{77}{9}=\frac{85}{9} x-\frac{77}{9}=-\frac{85}{9}
Simplify.
x=18 x=-\frac{8}{9}
Add \frac{77}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}