Evaluate
\frac{1913}{1424}\approx 1.343398876
Factor
\frac{1913}{2 ^ {4} \cdot 89} = 1\frac{489}{1424} = 1.3433988764044944
Share
Copied to clipboard
\begin{array}{l}\phantom{5696)}\phantom{1}\\5696\overline{)7652}\\\end{array}
Use the 1^{st} digit 7 from dividend 7652
\begin{array}{l}\phantom{5696)}0\phantom{2}\\5696\overline{)7652}\\\end{array}
Since 7 is less than 5696, use the next digit 6 from dividend 7652 and add 0 to the quotient
\begin{array}{l}\phantom{5696)}0\phantom{3}\\5696\overline{)7652}\\\end{array}
Use the 2^{nd} digit 6 from dividend 7652
\begin{array}{l}\phantom{5696)}00\phantom{4}\\5696\overline{)7652}\\\end{array}
Since 76 is less than 5696, use the next digit 5 from dividend 7652 and add 0 to the quotient
\begin{array}{l}\phantom{5696)}00\phantom{5}\\5696\overline{)7652}\\\end{array}
Use the 3^{rd} digit 5 from dividend 7652
\begin{array}{l}\phantom{5696)}000\phantom{6}\\5696\overline{)7652}\\\end{array}
Since 765 is less than 5696, use the next digit 2 from dividend 7652 and add 0 to the quotient
\begin{array}{l}\phantom{5696)}000\phantom{7}\\5696\overline{)7652}\\\end{array}
Use the 4^{th} digit 2 from dividend 7652
\begin{array}{l}\phantom{5696)}0001\phantom{8}\\5696\overline{)7652}\\\phantom{5696)}\underline{\phantom{}5696\phantom{}}\\\phantom{5696)}1956\\\end{array}
Find closest multiple of 5696 to 7652. We see that 1 \times 5696 = 5696 is the nearest. Now subtract 5696 from 7652 to get reminder 1956. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1956
Since 1956 is less than 5696, stop the division. The reminder is 1956. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}