Skip to main content
Solve for a
Tick mark Image
Solve for h
Tick mark Image

Similar Problems from Web Search

Share

76=a\left(1.5-h\right)^{3}+ak
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
76=a\left(3.375-6.75h+4.5h^{2}-h^{3}\right)+ak
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(1.5-h\right)^{3}.
76=3.375a-6.75ah+4.5ah^{2}-ah^{3}+ak
Use the distributive property to multiply a by 3.375-6.75h+4.5h^{2}-h^{3}.
3.375a-6.75ah+4.5ah^{2}-ah^{3}+ak=76
Swap sides so that all variable terms are on the left hand side.
\left(3.375-6.75h+4.5h^{2}-h^{3}+k\right)a=76
Combine all terms containing a.
\left(-h^{3}+\frac{9h^{2}}{2}-\frac{27h}{4}+k+3.375\right)a=76
The equation is in standard form.
\frac{\left(-h^{3}+\frac{9h^{2}}{2}-\frac{27h}{4}+k+3.375\right)a}{-h^{3}+\frac{9h^{2}}{2}-\frac{27h}{4}+k+3.375}=\frac{76}{-h^{3}+\frac{9h^{2}}{2}-\frac{27h}{4}+k+3.375}
Divide both sides by 3.375-6.75h+4.5h^{2}-h^{3}+k.
a=\frac{76}{-h^{3}+\frac{9h^{2}}{2}-\frac{27h}{4}+k+3.375}
Dividing by 3.375-6.75h+4.5h^{2}-h^{3}+k undoes the multiplication by 3.375-6.75h+4.5h^{2}-h^{3}+k.
a=\frac{608}{27+8k-54h+36h^{2}-8h^{3}}
Divide 76 by 3.375-6.75h+4.5h^{2}-h^{3}+k.
a=\frac{608}{27+8k-54h+36h^{2}-8h^{3}}\text{, }a\neq 0
Variable a cannot be equal to 0.