Evaluate
\frac{38897}{4500}\approx 8.643777778
Factor
\frac{97 \cdot 401}{2 ^ {2} \cdot 3 ^ {2} \cdot 5 ^ {3}} = 8\frac{2897}{4500} = 8.643777777777778
Share
Copied to clipboard
\frac{42}{5}+\frac{133}{500}-\frac{2}{90}
Reduce the fraction \frac{756}{90} to lowest terms by extracting and canceling out 18.
\frac{4200}{500}+\frac{133}{500}-\frac{2}{90}
Least common multiple of 5 and 500 is 500. Convert \frac{42}{5} and \frac{133}{500} to fractions with denominator 500.
\frac{4200+133}{500}-\frac{2}{90}
Since \frac{4200}{500} and \frac{133}{500} have the same denominator, add them by adding their numerators.
\frac{4333}{500}-\frac{2}{90}
Add 4200 and 133 to get 4333.
\frac{4333}{500}-\frac{1}{45}
Reduce the fraction \frac{2}{90} to lowest terms by extracting and canceling out 2.
\frac{38997}{4500}-\frac{100}{4500}
Least common multiple of 500 and 45 is 4500. Convert \frac{4333}{500} and \frac{1}{45} to fractions with denominator 4500.
\frac{38997-100}{4500}
Since \frac{38997}{4500} and \frac{100}{4500} have the same denominator, subtract them by subtracting their numerators.
\frac{38897}{4500}
Subtract 100 from 38997 to get 38897.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}