Solve for x
x=25
x = \frac{15}{4} = 3\frac{3}{4} = 3.75
Graph
Share
Copied to clipboard
\left(x-10\right)\times 75+x\times 75=8x\left(x-10\right)
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by 8x\left(x-10\right), the least common multiple of 8x,8\left(x-10\right).
75x-750+x\times 75=8x\left(x-10\right)
Use the distributive property to multiply x-10 by 75.
150x-750=8x\left(x-10\right)
Combine 75x and x\times 75 to get 150x.
150x-750=8x^{2}-80x
Use the distributive property to multiply 8x by x-10.
150x-750-8x^{2}=-80x
Subtract 8x^{2} from both sides.
150x-750-8x^{2}+80x=0
Add 80x to both sides.
230x-750-8x^{2}=0
Combine 150x and 80x to get 230x.
-8x^{2}+230x-750=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-230±\sqrt{230^{2}-4\left(-8\right)\left(-750\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 230 for b, and -750 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-230±\sqrt{52900-4\left(-8\right)\left(-750\right)}}{2\left(-8\right)}
Square 230.
x=\frac{-230±\sqrt{52900+32\left(-750\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-230±\sqrt{52900-24000}}{2\left(-8\right)}
Multiply 32 times -750.
x=\frac{-230±\sqrt{28900}}{2\left(-8\right)}
Add 52900 to -24000.
x=\frac{-230±170}{2\left(-8\right)}
Take the square root of 28900.
x=\frac{-230±170}{-16}
Multiply 2 times -8.
x=-\frac{60}{-16}
Now solve the equation x=\frac{-230±170}{-16} when ± is plus. Add -230 to 170.
x=\frac{15}{4}
Reduce the fraction \frac{-60}{-16} to lowest terms by extracting and canceling out 4.
x=-\frac{400}{-16}
Now solve the equation x=\frac{-230±170}{-16} when ± is minus. Subtract 170 from -230.
x=25
Divide -400 by -16.
x=\frac{15}{4} x=25
The equation is now solved.
\left(x-10\right)\times 75+x\times 75=8x\left(x-10\right)
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by 8x\left(x-10\right), the least common multiple of 8x,8\left(x-10\right).
75x-750+x\times 75=8x\left(x-10\right)
Use the distributive property to multiply x-10 by 75.
150x-750=8x\left(x-10\right)
Combine 75x and x\times 75 to get 150x.
150x-750=8x^{2}-80x
Use the distributive property to multiply 8x by x-10.
150x-750-8x^{2}=-80x
Subtract 8x^{2} from both sides.
150x-750-8x^{2}+80x=0
Add 80x to both sides.
230x-750-8x^{2}=0
Combine 150x and 80x to get 230x.
230x-8x^{2}=750
Add 750 to both sides. Anything plus zero gives itself.
-8x^{2}+230x=750
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}+230x}{-8}=\frac{750}{-8}
Divide both sides by -8.
x^{2}+\frac{230}{-8}x=\frac{750}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-\frac{115}{4}x=\frac{750}{-8}
Reduce the fraction \frac{230}{-8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{115}{4}x=-\frac{375}{4}
Reduce the fraction \frac{750}{-8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{115}{4}x+\left(-\frac{115}{8}\right)^{2}=-\frac{375}{4}+\left(-\frac{115}{8}\right)^{2}
Divide -\frac{115}{4}, the coefficient of the x term, by 2 to get -\frac{115}{8}. Then add the square of -\frac{115}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{115}{4}x+\frac{13225}{64}=-\frac{375}{4}+\frac{13225}{64}
Square -\frac{115}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{115}{4}x+\frac{13225}{64}=\frac{7225}{64}
Add -\frac{375}{4} to \frac{13225}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{115}{8}\right)^{2}=\frac{7225}{64}
Factor x^{2}-\frac{115}{4}x+\frac{13225}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{115}{8}\right)^{2}}=\sqrt{\frac{7225}{64}}
Take the square root of both sides of the equation.
x-\frac{115}{8}=\frac{85}{8} x-\frac{115}{8}=-\frac{85}{8}
Simplify.
x=25 x=\frac{15}{4}
Add \frac{115}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}