Evaluate
\frac{75}{61}\approx 1.229508197
Factor
\frac{3 \cdot 5 ^ {2}}{61} = 1\frac{14}{61} = 1.2295081967213115
Share
Copied to clipboard
\begin{array}{l}\phantom{61)}\phantom{1}\\61\overline{)75}\\\end{array}
Use the 1^{st} digit 7 from dividend 75
\begin{array}{l}\phantom{61)}0\phantom{2}\\61\overline{)75}\\\end{array}
Since 7 is less than 61, use the next digit 5 from dividend 75 and add 0 to the quotient
\begin{array}{l}\phantom{61)}0\phantom{3}\\61\overline{)75}\\\end{array}
Use the 2^{nd} digit 5 from dividend 75
\begin{array}{l}\phantom{61)}01\phantom{4}\\61\overline{)75}\\\phantom{61)}\underline{\phantom{}61\phantom{}}\\\phantom{61)}14\\\end{array}
Find closest multiple of 61 to 75. We see that 1 \times 61 = 61 is the nearest. Now subtract 61 from 75 to get reminder 14. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }14
Since 14 is less than 61, stop the division. The reminder is 14. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}