Evaluate
\frac{742}{93}\approx 7.978494624
Factor
\frac{2 \cdot 7 \cdot 53}{3 \cdot 31} = 7\frac{91}{93} = 7.978494623655914
Share
Copied to clipboard
\begin{array}{l}\phantom{93)}\phantom{1}\\93\overline{)742}\\\end{array}
Use the 1^{st} digit 7 from dividend 742
\begin{array}{l}\phantom{93)}0\phantom{2}\\93\overline{)742}\\\end{array}
Since 7 is less than 93, use the next digit 4 from dividend 742 and add 0 to the quotient
\begin{array}{l}\phantom{93)}0\phantom{3}\\93\overline{)742}\\\end{array}
Use the 2^{nd} digit 4 from dividend 742
\begin{array}{l}\phantom{93)}00\phantom{4}\\93\overline{)742}\\\end{array}
Since 74 is less than 93, use the next digit 2 from dividend 742 and add 0 to the quotient
\begin{array}{l}\phantom{93)}00\phantom{5}\\93\overline{)742}\\\end{array}
Use the 3^{rd} digit 2 from dividend 742
\begin{array}{l}\phantom{93)}007\phantom{6}\\93\overline{)742}\\\phantom{93)}\underline{\phantom{}651\phantom{}}\\\phantom{93)9}91\\\end{array}
Find closest multiple of 93 to 742. We see that 7 \times 93 = 651 is the nearest. Now subtract 651 from 742 to get reminder 91. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }91
Since 91 is less than 93, stop the division. The reminder is 91. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}