Evaluate
74
Factor
2\times 37
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)740}\\\end{array}
Use the 1^{st} digit 7 from dividend 740
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)740}\\\end{array}
Since 7 is less than 10, use the next digit 4 from dividend 740 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)740}\\\end{array}
Use the 2^{nd} digit 4 from dividend 740
\begin{array}{l}\phantom{10)}07\phantom{4}\\10\overline{)740}\\\phantom{10)}\underline{\phantom{}70\phantom{9}}\\\phantom{10)9}4\\\end{array}
Find closest multiple of 10 to 74. We see that 7 \times 10 = 70 is the nearest. Now subtract 70 from 74 to get reminder 4. Add 7 to quotient.
\begin{array}{l}\phantom{10)}07\phantom{5}\\10\overline{)740}\\\phantom{10)}\underline{\phantom{}70\phantom{9}}\\\phantom{10)9}40\\\end{array}
Use the 3^{rd} digit 0 from dividend 740
\begin{array}{l}\phantom{10)}074\phantom{6}\\10\overline{)740}\\\phantom{10)}\underline{\phantom{}70\phantom{9}}\\\phantom{10)9}40\\\phantom{10)}\underline{\phantom{9}40\phantom{}}\\\phantom{10)999}0\\\end{array}
Find closest multiple of 10 to 40. We see that 4 \times 10 = 40 is the nearest. Now subtract 40 from 40 to get reminder 0. Add 4 to quotient.
\text{Quotient: }74 \text{Reminder: }0
Since 0 is less than 10, stop the division. The reminder is 0. The topmost line 074 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 74.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}