Evaluate
\frac{37}{33}\approx 1.121212121
Factor
\frac{37}{3 \cdot 11} = 1\frac{4}{33} = 1.121212121212121
Share
Copied to clipboard
\begin{array}{l}\phantom{66)}\phantom{1}\\66\overline{)74}\\\end{array}
Use the 1^{st} digit 7 from dividend 74
\begin{array}{l}\phantom{66)}0\phantom{2}\\66\overline{)74}\\\end{array}
Since 7 is less than 66, use the next digit 4 from dividend 74 and add 0 to the quotient
\begin{array}{l}\phantom{66)}0\phantom{3}\\66\overline{)74}\\\end{array}
Use the 2^{nd} digit 4 from dividend 74
\begin{array}{l}\phantom{66)}01\phantom{4}\\66\overline{)74}\\\phantom{66)}\underline{\phantom{}66\phantom{}}\\\phantom{66)9}8\\\end{array}
Find closest multiple of 66 to 74. We see that 1 \times 66 = 66 is the nearest. Now subtract 66 from 74 to get reminder 8. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }8
Since 8 is less than 66, stop the division. The reminder is 8. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}