Evaluate
\frac{37}{26}\approx 1.423076923
Factor
\frac{37}{2 \cdot 13} = 1\frac{11}{26} = 1.4230769230769231
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)74}\\\end{array}
Use the 1^{st} digit 7 from dividend 74
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)74}\\\end{array}
Since 7 is less than 52, use the next digit 4 from dividend 74 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)74}\\\end{array}
Use the 2^{nd} digit 4 from dividend 74
\begin{array}{l}\phantom{52)}01\phantom{4}\\52\overline{)74}\\\phantom{52)}\underline{\phantom{}52\phantom{}}\\\phantom{52)}22\\\end{array}
Find closest multiple of 52 to 74. We see that 1 \times 52 = 52 is the nearest. Now subtract 52 from 74 to get reminder 22. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }22
Since 22 is less than 52, stop the division. The reminder is 22. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}