Evaluate
\frac{74}{21}\approx 3.523809524
Factor
\frac{2 \cdot 37}{3 \cdot 7} = 3\frac{11}{21} = 3.5238095238095237
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)74}\\\end{array}
Use the 1^{st} digit 7 from dividend 74
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)74}\\\end{array}
Since 7 is less than 21, use the next digit 4 from dividend 74 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)74}\\\end{array}
Use the 2^{nd} digit 4 from dividend 74
\begin{array}{l}\phantom{21)}03\phantom{4}\\21\overline{)74}\\\phantom{21)}\underline{\phantom{}63\phantom{}}\\\phantom{21)}11\\\end{array}
Find closest multiple of 21 to 74. We see that 3 \times 21 = 63 is the nearest. Now subtract 63 from 74 to get reminder 11. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }11
Since 11 is less than 21, stop the division. The reminder is 11. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}