Evaluate
\frac{91}{16}=5.6875
Factor
\frac{7 \cdot 13}{2 ^ {4}} = 5\frac{11}{16} = 5.6875
Share
Copied to clipboard
\begin{array}{l}\phantom{128)}\phantom{1}\\128\overline{)728}\\\end{array}
Use the 1^{st} digit 7 from dividend 728
\begin{array}{l}\phantom{128)}0\phantom{2}\\128\overline{)728}\\\end{array}
Since 7 is less than 128, use the next digit 2 from dividend 728 and add 0 to the quotient
\begin{array}{l}\phantom{128)}0\phantom{3}\\128\overline{)728}\\\end{array}
Use the 2^{nd} digit 2 from dividend 728
\begin{array}{l}\phantom{128)}00\phantom{4}\\128\overline{)728}\\\end{array}
Since 72 is less than 128, use the next digit 8 from dividend 728 and add 0 to the quotient
\begin{array}{l}\phantom{128)}00\phantom{5}\\128\overline{)728}\\\end{array}
Use the 3^{rd} digit 8 from dividend 728
\begin{array}{l}\phantom{128)}005\phantom{6}\\128\overline{)728}\\\phantom{128)}\underline{\phantom{}640\phantom{}}\\\phantom{128)9}88\\\end{array}
Find closest multiple of 128 to 728. We see that 5 \times 128 = 640 is the nearest. Now subtract 640 from 728 to get reminder 88. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }88
Since 88 is less than 128, stop the division. The reminder is 88. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}