Evaluate
\frac{3611}{1194}\approx 3.024288107
Factor
\frac{23 \cdot 157}{2 \cdot 3 \cdot 199} = 3\frac{29}{1194} = 3.02428810720268
Share
Copied to clipboard
\begin{array}{l}\phantom{2388)}\phantom{1}\\2388\overline{)7222}\\\end{array}
Use the 1^{st} digit 7 from dividend 7222
\begin{array}{l}\phantom{2388)}0\phantom{2}\\2388\overline{)7222}\\\end{array}
Since 7 is less than 2388, use the next digit 2 from dividend 7222 and add 0 to the quotient
\begin{array}{l}\phantom{2388)}0\phantom{3}\\2388\overline{)7222}\\\end{array}
Use the 2^{nd} digit 2 from dividend 7222
\begin{array}{l}\phantom{2388)}00\phantom{4}\\2388\overline{)7222}\\\end{array}
Since 72 is less than 2388, use the next digit 2 from dividend 7222 and add 0 to the quotient
\begin{array}{l}\phantom{2388)}00\phantom{5}\\2388\overline{)7222}\\\end{array}
Use the 3^{rd} digit 2 from dividend 7222
\begin{array}{l}\phantom{2388)}000\phantom{6}\\2388\overline{)7222}\\\end{array}
Since 722 is less than 2388, use the next digit 2 from dividend 7222 and add 0 to the quotient
\begin{array}{l}\phantom{2388)}000\phantom{7}\\2388\overline{)7222}\\\end{array}
Use the 4^{th} digit 2 from dividend 7222
\begin{array}{l}\phantom{2388)}0003\phantom{8}\\2388\overline{)7222}\\\phantom{2388)}\underline{\phantom{}7164\phantom{}}\\\phantom{2388)99}58\\\end{array}
Find closest multiple of 2388 to 7222. We see that 3 \times 2388 = 7164 is the nearest. Now subtract 7164 from 7222 to get reminder 58. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }58
Since 58 is less than 2388, stop the division. The reminder is 58. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}