Solve for x
x=-8
x=18
Graph
Share
Copied to clipboard
x\times 720+x\left(x-10\right)\left(-50\right)=\left(x-10\right)\times 720
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by x\left(x-10\right), the least common multiple of x-10,x.
x\times 720+\left(x^{2}-10x\right)\left(-50\right)=\left(x-10\right)\times 720
Use the distributive property to multiply x by x-10.
x\times 720-50x^{2}+500x=\left(x-10\right)\times 720
Use the distributive property to multiply x^{2}-10x by -50.
1220x-50x^{2}=\left(x-10\right)\times 720
Combine x\times 720 and 500x to get 1220x.
1220x-50x^{2}=720x-7200
Use the distributive property to multiply x-10 by 720.
1220x-50x^{2}-720x=-7200
Subtract 720x from both sides.
500x-50x^{2}=-7200
Combine 1220x and -720x to get 500x.
500x-50x^{2}+7200=0
Add 7200 to both sides.
-50x^{2}+500x+7200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-500±\sqrt{500^{2}-4\left(-50\right)\times 7200}}{2\left(-50\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -50 for a, 500 for b, and 7200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-500±\sqrt{250000-4\left(-50\right)\times 7200}}{2\left(-50\right)}
Square 500.
x=\frac{-500±\sqrt{250000+200\times 7200}}{2\left(-50\right)}
Multiply -4 times -50.
x=\frac{-500±\sqrt{250000+1440000}}{2\left(-50\right)}
Multiply 200 times 7200.
x=\frac{-500±\sqrt{1690000}}{2\left(-50\right)}
Add 250000 to 1440000.
x=\frac{-500±1300}{2\left(-50\right)}
Take the square root of 1690000.
x=\frac{-500±1300}{-100}
Multiply 2 times -50.
x=\frac{800}{-100}
Now solve the equation x=\frac{-500±1300}{-100} when ± is plus. Add -500 to 1300.
x=-8
Divide 800 by -100.
x=-\frac{1800}{-100}
Now solve the equation x=\frac{-500±1300}{-100} when ± is minus. Subtract 1300 from -500.
x=18
Divide -1800 by -100.
x=-8 x=18
The equation is now solved.
x\times 720+x\left(x-10\right)\left(-50\right)=\left(x-10\right)\times 720
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by x\left(x-10\right), the least common multiple of x-10,x.
x\times 720+\left(x^{2}-10x\right)\left(-50\right)=\left(x-10\right)\times 720
Use the distributive property to multiply x by x-10.
x\times 720-50x^{2}+500x=\left(x-10\right)\times 720
Use the distributive property to multiply x^{2}-10x by -50.
1220x-50x^{2}=\left(x-10\right)\times 720
Combine x\times 720 and 500x to get 1220x.
1220x-50x^{2}=720x-7200
Use the distributive property to multiply x-10 by 720.
1220x-50x^{2}-720x=-7200
Subtract 720x from both sides.
500x-50x^{2}=-7200
Combine 1220x and -720x to get 500x.
-50x^{2}+500x=-7200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-50x^{2}+500x}{-50}=-\frac{7200}{-50}
Divide both sides by -50.
x^{2}+\frac{500}{-50}x=-\frac{7200}{-50}
Dividing by -50 undoes the multiplication by -50.
x^{2}-10x=-\frac{7200}{-50}
Divide 500 by -50.
x^{2}-10x=144
Divide -7200 by -50.
x^{2}-10x+\left(-5\right)^{2}=144+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=144+25
Square -5.
x^{2}-10x+25=169
Add 144 to 25.
\left(x-5\right)^{2}=169
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{169}
Take the square root of both sides of the equation.
x-5=13 x-5=-13
Simplify.
x=18 x=-8
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}