Solve for x
x=5\sqrt{20737}+715\approx 1435.017360902
x=715-5\sqrt{20737}\approx -5.017360902
Graph
Share
Copied to clipboard
\left(x+10\right)\times 720+x\times 720=x\left(x+10\right)
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+10\right), the least common multiple of x,x+10.
720x+7200+x\times 720=x\left(x+10\right)
Use the distributive property to multiply x+10 by 720.
1440x+7200=x\left(x+10\right)
Combine 720x and x\times 720 to get 1440x.
1440x+7200=x^{2}+10x
Use the distributive property to multiply x by x+10.
1440x+7200-x^{2}=10x
Subtract x^{2} from both sides.
1440x+7200-x^{2}-10x=0
Subtract 10x from both sides.
1430x+7200-x^{2}=0
Combine 1440x and -10x to get 1430x.
-x^{2}+1430x+7200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1430±\sqrt{1430^{2}-4\left(-1\right)\times 7200}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1430 for b, and 7200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1430±\sqrt{2044900-4\left(-1\right)\times 7200}}{2\left(-1\right)}
Square 1430.
x=\frac{-1430±\sqrt{2044900+4\times 7200}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1430±\sqrt{2044900+28800}}{2\left(-1\right)}
Multiply 4 times 7200.
x=\frac{-1430±\sqrt{2073700}}{2\left(-1\right)}
Add 2044900 to 28800.
x=\frac{-1430±10\sqrt{20737}}{2\left(-1\right)}
Take the square root of 2073700.
x=\frac{-1430±10\sqrt{20737}}{-2}
Multiply 2 times -1.
x=\frac{10\sqrt{20737}-1430}{-2}
Now solve the equation x=\frac{-1430±10\sqrt{20737}}{-2} when ± is plus. Add -1430 to 10\sqrt{20737}.
x=715-5\sqrt{20737}
Divide -1430+10\sqrt{20737} by -2.
x=\frac{-10\sqrt{20737}-1430}{-2}
Now solve the equation x=\frac{-1430±10\sqrt{20737}}{-2} when ± is minus. Subtract 10\sqrt{20737} from -1430.
x=5\sqrt{20737}+715
Divide -1430-10\sqrt{20737} by -2.
x=715-5\sqrt{20737} x=5\sqrt{20737}+715
The equation is now solved.
\left(x+10\right)\times 720+x\times 720=x\left(x+10\right)
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+10\right), the least common multiple of x,x+10.
720x+7200+x\times 720=x\left(x+10\right)
Use the distributive property to multiply x+10 by 720.
1440x+7200=x\left(x+10\right)
Combine 720x and x\times 720 to get 1440x.
1440x+7200=x^{2}+10x
Use the distributive property to multiply x by x+10.
1440x+7200-x^{2}=10x
Subtract x^{2} from both sides.
1440x+7200-x^{2}-10x=0
Subtract 10x from both sides.
1430x+7200-x^{2}=0
Combine 1440x and -10x to get 1430x.
1430x-x^{2}=-7200
Subtract 7200 from both sides. Anything subtracted from zero gives its negation.
-x^{2}+1430x=-7200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+1430x}{-1}=-\frac{7200}{-1}
Divide both sides by -1.
x^{2}+\frac{1430}{-1}x=-\frac{7200}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-1430x=-\frac{7200}{-1}
Divide 1430 by -1.
x^{2}-1430x=7200
Divide -7200 by -1.
x^{2}-1430x+\left(-715\right)^{2}=7200+\left(-715\right)^{2}
Divide -1430, the coefficient of the x term, by 2 to get -715. Then add the square of -715 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1430x+511225=7200+511225
Square -715.
x^{2}-1430x+511225=518425
Add 7200 to 511225.
\left(x-715\right)^{2}=518425
Factor x^{2}-1430x+511225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-715\right)^{2}}=\sqrt{518425}
Take the square root of both sides of the equation.
x-715=5\sqrt{20737} x-715=-5\sqrt{20737}
Simplify.
x=5\sqrt{20737}+715 x=715-5\sqrt{20737}
Add 715 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}