Evaluate
\frac{2382848}{8585}\approx 277.559464182
Factor
\frac{2 ^ {10} \cdot 13 \cdot 179}{5 \cdot 17 \cdot 101} = 277\frac{4803}{8585} = 277.5594641817123
Share
Copied to clipboard
\begin{array}{l}\phantom{25755)}\phantom{1}\\25755\overline{)7148544}\\\end{array}
Use the 1^{st} digit 7 from dividend 7148544
\begin{array}{l}\phantom{25755)}0\phantom{2}\\25755\overline{)7148544}\\\end{array}
Since 7 is less than 25755, use the next digit 1 from dividend 7148544 and add 0 to the quotient
\begin{array}{l}\phantom{25755)}0\phantom{3}\\25755\overline{)7148544}\\\end{array}
Use the 2^{nd} digit 1 from dividend 7148544
\begin{array}{l}\phantom{25755)}00\phantom{4}\\25755\overline{)7148544}\\\end{array}
Since 71 is less than 25755, use the next digit 4 from dividend 7148544 and add 0 to the quotient
\begin{array}{l}\phantom{25755)}00\phantom{5}\\25755\overline{)7148544}\\\end{array}
Use the 3^{rd} digit 4 from dividend 7148544
\begin{array}{l}\phantom{25755)}000\phantom{6}\\25755\overline{)7148544}\\\end{array}
Since 714 is less than 25755, use the next digit 8 from dividend 7148544 and add 0 to the quotient
\begin{array}{l}\phantom{25755)}000\phantom{7}\\25755\overline{)7148544}\\\end{array}
Use the 4^{th} digit 8 from dividend 7148544
\begin{array}{l}\phantom{25755)}0000\phantom{8}\\25755\overline{)7148544}\\\end{array}
Since 7148 is less than 25755, use the next digit 5 from dividend 7148544 and add 0 to the quotient
\begin{array}{l}\phantom{25755)}0000\phantom{9}\\25755\overline{)7148544}\\\end{array}
Use the 5^{th} digit 5 from dividend 7148544
\begin{array}{l}\phantom{25755)}00002\phantom{10}\\25755\overline{)7148544}\\\phantom{25755)}\underline{\phantom{}51510\phantom{99}}\\\phantom{25755)}19975\\\end{array}
Find closest multiple of 25755 to 71485. We see that 2 \times 25755 = 51510 is the nearest. Now subtract 51510 from 71485 to get reminder 19975. Add 2 to quotient.
\begin{array}{l}\phantom{25755)}00002\phantom{11}\\25755\overline{)7148544}\\\phantom{25755)}\underline{\phantom{}51510\phantom{99}}\\\phantom{25755)}199754\\\end{array}
Use the 6^{th} digit 4 from dividend 7148544
\begin{array}{l}\phantom{25755)}000027\phantom{12}\\25755\overline{)7148544}\\\phantom{25755)}\underline{\phantom{}51510\phantom{99}}\\\phantom{25755)}199754\\\phantom{25755)}\underline{\phantom{}180285\phantom{9}}\\\phantom{25755)9}19469\\\end{array}
Find closest multiple of 25755 to 199754. We see that 7 \times 25755 = 180285 is the nearest. Now subtract 180285 from 199754 to get reminder 19469. Add 7 to quotient.
\begin{array}{l}\phantom{25755)}000027\phantom{13}\\25755\overline{)7148544}\\\phantom{25755)}\underline{\phantom{}51510\phantom{99}}\\\phantom{25755)}199754\\\phantom{25755)}\underline{\phantom{}180285\phantom{9}}\\\phantom{25755)9}194694\\\end{array}
Use the 7^{th} digit 4 from dividend 7148544
\begin{array}{l}\phantom{25755)}0000277\phantom{14}\\25755\overline{)7148544}\\\phantom{25755)}\underline{\phantom{}51510\phantom{99}}\\\phantom{25755)}199754\\\phantom{25755)}\underline{\phantom{}180285\phantom{9}}\\\phantom{25755)9}194694\\\phantom{25755)}\underline{\phantom{9}180285\phantom{}}\\\phantom{25755)99}14409\\\end{array}
Find closest multiple of 25755 to 194694. We see that 7 \times 25755 = 180285 is the nearest. Now subtract 180285 from 194694 to get reminder 14409. Add 7 to quotient.
\text{Quotient: }277 \text{Reminder: }14409
Since 14409 is less than 25755, stop the division. The reminder is 14409. The topmost line 0000277 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 277.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}