Evaluate
\frac{704}{125}=5.632
Factor
\frac{2 ^ {6} \cdot 11}{5 ^ {3}} = 5\frac{79}{125} = 5.632
Share
Copied to clipboard
\begin{array}{l}\phantom{125)}\phantom{1}\\125\overline{)704}\\\end{array}
Use the 1^{st} digit 7 from dividend 704
\begin{array}{l}\phantom{125)}0\phantom{2}\\125\overline{)704}\\\end{array}
Since 7 is less than 125, use the next digit 0 from dividend 704 and add 0 to the quotient
\begin{array}{l}\phantom{125)}0\phantom{3}\\125\overline{)704}\\\end{array}
Use the 2^{nd} digit 0 from dividend 704
\begin{array}{l}\phantom{125)}00\phantom{4}\\125\overline{)704}\\\end{array}
Since 70 is less than 125, use the next digit 4 from dividend 704 and add 0 to the quotient
\begin{array}{l}\phantom{125)}00\phantom{5}\\125\overline{)704}\\\end{array}
Use the 3^{rd} digit 4 from dividend 704
\begin{array}{l}\phantom{125)}005\phantom{6}\\125\overline{)704}\\\phantom{125)}\underline{\phantom{}625\phantom{}}\\\phantom{125)9}79\\\end{array}
Find closest multiple of 125 to 704. We see that 5 \times 125 = 625 is the nearest. Now subtract 625 from 704 to get reminder 79. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }79
Since 79 is less than 125, stop the division. The reminder is 79. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}