Solve for x (complex solution)
x=-6+i\times 10\sqrt{3}\approx -6+17.320508076i
x=-i\times 10\sqrt{3}-6\approx -6-17.320508076i
Graph
Share
Copied to clipboard
x\times 70-\left(x+12\right)\times 70=2.5x\left(x+12\right)
Variable x cannot be equal to any of the values -12,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+12\right), the least common multiple of x+12,x.
x\times 70-\left(70x+840\right)=2.5x\left(x+12\right)
Use the distributive property to multiply x+12 by 70.
x\times 70-70x-840=2.5x\left(x+12\right)
To find the opposite of 70x+840, find the opposite of each term.
-840=2.5x\left(x+12\right)
Combine x\times 70 and -70x to get 0.
-840=2.5x^{2}+30x
Use the distributive property to multiply 2.5x by x+12.
2.5x^{2}+30x=-840
Swap sides so that all variable terms are on the left hand side.
2.5x^{2}+30x+840=0
Add 840 to both sides.
x=\frac{-30±\sqrt{30^{2}-4\times 2.5\times 840}}{2\times 2.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2.5 for a, 30 for b, and 840 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 2.5\times 840}}{2\times 2.5}
Square 30.
x=\frac{-30±\sqrt{900-10\times 840}}{2\times 2.5}
Multiply -4 times 2.5.
x=\frac{-30±\sqrt{900-8400}}{2\times 2.5}
Multiply -10 times 840.
x=\frac{-30±\sqrt{-7500}}{2\times 2.5}
Add 900 to -8400.
x=\frac{-30±50\sqrt{3}i}{2\times 2.5}
Take the square root of -7500.
x=\frac{-30±50\sqrt{3}i}{5}
Multiply 2 times 2.5.
x=\frac{-30+50\sqrt{3}i}{5}
Now solve the equation x=\frac{-30±50\sqrt{3}i}{5} when ± is plus. Add -30 to 50i\sqrt{3}.
x=-6+10\sqrt{3}i
Divide -30+50i\sqrt{3} by 5.
x=\frac{-50\sqrt{3}i-30}{5}
Now solve the equation x=\frac{-30±50\sqrt{3}i}{5} when ± is minus. Subtract 50i\sqrt{3} from -30.
x=-10\sqrt{3}i-6
Divide -30-50i\sqrt{3} by 5.
x=-6+10\sqrt{3}i x=-10\sqrt{3}i-6
The equation is now solved.
x\times 70-\left(x+12\right)\times 70=2.5x\left(x+12\right)
Variable x cannot be equal to any of the values -12,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+12\right), the least common multiple of x+12,x.
x\times 70-\left(70x+840\right)=2.5x\left(x+12\right)
Use the distributive property to multiply x+12 by 70.
x\times 70-70x-840=2.5x\left(x+12\right)
To find the opposite of 70x+840, find the opposite of each term.
-840=2.5x\left(x+12\right)
Combine x\times 70 and -70x to get 0.
-840=2.5x^{2}+30x
Use the distributive property to multiply 2.5x by x+12.
2.5x^{2}+30x=-840
Swap sides so that all variable terms are on the left hand side.
\frac{2.5x^{2}+30x}{2.5}=-\frac{840}{2.5}
Divide both sides of the equation by 2.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{30}{2.5}x=-\frac{840}{2.5}
Dividing by 2.5 undoes the multiplication by 2.5.
x^{2}+12x=-\frac{840}{2.5}
Divide 30 by 2.5 by multiplying 30 by the reciprocal of 2.5.
x^{2}+12x=-336
Divide -840 by 2.5 by multiplying -840 by the reciprocal of 2.5.
x^{2}+12x+6^{2}=-336+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=-336+36
Square 6.
x^{2}+12x+36=-300
Add -336 to 36.
\left(x+6\right)^{2}=-300
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{-300}
Take the square root of both sides of the equation.
x+6=10\sqrt{3}i x+6=-10\sqrt{3}i
Simplify.
x=-6+10\sqrt{3}i x=-10\sqrt{3}i-6
Subtract 6 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}