Evaluate
-\frac{526}{627}\approx -0.83891547
Factor
-\frac{526}{627} = -0.8389154704944178
Share
Copied to clipboard
\frac{14}{19}-1-\frac{1}{1+\frac{70}{95}}
Reduce the fraction \frac{70}{95} to lowest terms by extracting and canceling out 5.
\frac{14}{19}-\frac{19}{19}-\frac{1}{1+\frac{70}{95}}
Convert 1 to fraction \frac{19}{19}.
\frac{14-19}{19}-\frac{1}{1+\frac{70}{95}}
Since \frac{14}{19} and \frac{19}{19} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{19}-\frac{1}{1+\frac{70}{95}}
Subtract 19 from 14 to get -5.
-\frac{5}{19}-\frac{1}{1+\frac{14}{19}}
Reduce the fraction \frac{70}{95} to lowest terms by extracting and canceling out 5.
-\frac{5}{19}-\frac{1}{\frac{19}{19}+\frac{14}{19}}
Convert 1 to fraction \frac{19}{19}.
-\frac{5}{19}-\frac{1}{\frac{19+14}{19}}
Since \frac{19}{19} and \frac{14}{19} have the same denominator, add them by adding their numerators.
-\frac{5}{19}-\frac{1}{\frac{33}{19}}
Add 19 and 14 to get 33.
-\frac{5}{19}-1\times \frac{19}{33}
Divide 1 by \frac{33}{19} by multiplying 1 by the reciprocal of \frac{33}{19}.
-\frac{5}{19}-\frac{19}{33}
Multiply 1 and \frac{19}{33} to get \frac{19}{33}.
-\frac{165}{627}-\frac{361}{627}
Least common multiple of 19 and 33 is 627. Convert -\frac{5}{19} and \frac{19}{33} to fractions with denominator 627.
\frac{-165-361}{627}
Since -\frac{165}{627} and \frac{361}{627} have the same denominator, subtract them by subtracting their numerators.
-\frac{526}{627}
Subtract 361 from -165 to get -526.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}