Evaluate
\frac{49}{120}\approx 0.408333333
Factor
\frac{7 ^ {2}}{2 ^ {3} \cdot 3 \cdot 5} = 0.4083333333333333
Share
Copied to clipboard
\frac{7}{8}-\left(1-\frac{1}{1+\frac{70}{80}}\right)
Reduce the fraction \frac{70}{80} to lowest terms by extracting and canceling out 10.
\frac{7}{8}-\left(1-\frac{1}{1+\frac{7}{8}}\right)
Reduce the fraction \frac{70}{80} to lowest terms by extracting and canceling out 10.
\frac{7}{8}-\left(1-\frac{1}{\frac{8}{8}+\frac{7}{8}}\right)
Convert 1 to fraction \frac{8}{8}.
\frac{7}{8}-\left(1-\frac{1}{\frac{8+7}{8}}\right)
Since \frac{8}{8} and \frac{7}{8} have the same denominator, add them by adding their numerators.
\frac{7}{8}-\left(1-\frac{1}{\frac{15}{8}}\right)
Add 8 and 7 to get 15.
\frac{7}{8}-\left(1-1\times \frac{8}{15}\right)
Divide 1 by \frac{15}{8} by multiplying 1 by the reciprocal of \frac{15}{8}.
\frac{7}{8}-\left(1-\frac{8}{15}\right)
Multiply 1 and \frac{8}{15} to get \frac{8}{15}.
\frac{7}{8}-\left(\frac{15}{15}-\frac{8}{15}\right)
Convert 1 to fraction \frac{15}{15}.
\frac{7}{8}-\frac{15-8}{15}
Since \frac{15}{15} and \frac{8}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{8}-\frac{7}{15}
Subtract 8 from 15 to get 7.
\frac{105}{120}-\frac{56}{120}
Least common multiple of 8 and 15 is 120. Convert \frac{7}{8} and \frac{7}{15} to fractions with denominator 120.
\frac{105-56}{120}
Since \frac{105}{120} and \frac{56}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{49}{120}
Subtract 56 from 105 to get 49.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}