Evaluate
\frac{35}{26}\approx 1.346153846
Factor
\frac{5 \cdot 7}{2 \cdot 13} = 1\frac{9}{26} = 1.3461538461538463
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)70}\\\end{array}
Use the 1^{st} digit 7 from dividend 70
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)70}\\\end{array}
Since 7 is less than 52, use the next digit 0 from dividend 70 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)70}\\\end{array}
Use the 2^{nd} digit 0 from dividend 70
\begin{array}{l}\phantom{52)}01\phantom{4}\\52\overline{)70}\\\phantom{52)}\underline{\phantom{}52\phantom{}}\\\phantom{52)}18\\\end{array}
Find closest multiple of 52 to 70. We see that 1 \times 52 = 52 is the nearest. Now subtract 52 from 70 to get reminder 18. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }18
Since 18 is less than 52, stop the division. The reminder is 18. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}