Evaluate
\frac{70\left(\sqrt{455}+2\right)}{1353}\approx 1.20705915
Share
Copied to clipboard
\frac{70\left(3\sqrt{455}+6\right)}{\left(3\sqrt{455}-6\right)\left(3\sqrt{455}+6\right)}
Rationalize the denominator of \frac{70}{3\sqrt{455}-6} by multiplying numerator and denominator by 3\sqrt{455}+6.
\frac{70\left(3\sqrt{455}+6\right)}{\left(3\sqrt{455}\right)^{2}-6^{2}}
Consider \left(3\sqrt{455}-6\right)\left(3\sqrt{455}+6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{70\left(3\sqrt{455}+6\right)}{3^{2}\left(\sqrt{455}\right)^{2}-6^{2}}
Expand \left(3\sqrt{455}\right)^{2}.
\frac{70\left(3\sqrt{455}+6\right)}{9\left(\sqrt{455}\right)^{2}-6^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{70\left(3\sqrt{455}+6\right)}{9\times 455-6^{2}}
The square of \sqrt{455} is 455.
\frac{70\left(3\sqrt{455}+6\right)}{4095-6^{2}}
Multiply 9 and 455 to get 4095.
\frac{70\left(3\sqrt{455}+6\right)}{4095-36}
Calculate 6 to the power of 2 and get 36.
\frac{70\left(3\sqrt{455}+6\right)}{4059}
Subtract 36 from 4095 to get 4059.
\frac{210\sqrt{455}+420}{4059}
Use the distributive property to multiply 70 by 3\sqrt{455}+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}