Evaluate
\frac{35}{9}\approx 3.888888889
Factor
\frac{5 \cdot 7}{3 ^ {2}} = 3\frac{8}{9} = 3.888888888888889
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)70}\\\end{array}
Use the 1^{st} digit 7 from dividend 70
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)70}\\\end{array}
Since 7 is less than 18, use the next digit 0 from dividend 70 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)70}\\\end{array}
Use the 2^{nd} digit 0 from dividend 70
\begin{array}{l}\phantom{18)}03\phantom{4}\\18\overline{)70}\\\phantom{18)}\underline{\phantom{}54\phantom{}}\\\phantom{18)}16\\\end{array}
Find closest multiple of 18 to 70. We see that 3 \times 18 = 54 is the nearest. Now subtract 54 from 70 to get reminder 16. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }16
Since 16 is less than 18, stop the division. The reminder is 16. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}