Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7-2\sqrt{10}\right)\left(\sqrt{10}+3\right)}{\left(\sqrt{10}-3\right)\left(\sqrt{10}+3\right)}
Rationalize the denominator of \frac{7-2\sqrt{10}}{\sqrt{10}-3} by multiplying numerator and denominator by \sqrt{10}+3.
\frac{\left(7-2\sqrt{10}\right)\left(\sqrt{10}+3\right)}{\left(\sqrt{10}\right)^{2}-3^{2}}
Consider \left(\sqrt{10}-3\right)\left(\sqrt{10}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7-2\sqrt{10}\right)\left(\sqrt{10}+3\right)}{10-9}
Square \sqrt{10}. Square 3.
\frac{\left(7-2\sqrt{10}\right)\left(\sqrt{10}+3\right)}{1}
Subtract 9 from 10 to get 1.
\left(7-2\sqrt{10}\right)\left(\sqrt{10}+3\right)
Anything divided by one gives itself.
7\sqrt{10}+21-2\left(\sqrt{10}\right)^{2}-6\sqrt{10}
Apply the distributive property by multiplying each term of 7-2\sqrt{10} by each term of \sqrt{10}+3.
7\sqrt{10}+21-2\times 10-6\sqrt{10}
The square of \sqrt{10} is 10.
7\sqrt{10}+21-20-6\sqrt{10}
Multiply -2 and 10 to get -20.
7\sqrt{10}+1-6\sqrt{10}
Subtract 20 from 21 to get 1.
\sqrt{10}+1
Combine 7\sqrt{10} and -6\sqrt{10} to get \sqrt{10}.