Evaluate
\sqrt{10}+1\approx 4.16227766
Share
Copied to clipboard
\frac{\left(7-2\sqrt{10}\right)\left(\sqrt{10}+3\right)}{\left(\sqrt{10}-3\right)\left(\sqrt{10}+3\right)}
Rationalize the denominator of \frac{7-2\sqrt{10}}{\sqrt{10}-3} by multiplying numerator and denominator by \sqrt{10}+3.
\frac{\left(7-2\sqrt{10}\right)\left(\sqrt{10}+3\right)}{\left(\sqrt{10}\right)^{2}-3^{2}}
Consider \left(\sqrt{10}-3\right)\left(\sqrt{10}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7-2\sqrt{10}\right)\left(\sqrt{10}+3\right)}{10-9}
Square \sqrt{10}. Square 3.
\frac{\left(7-2\sqrt{10}\right)\left(\sqrt{10}+3\right)}{1}
Subtract 9 from 10 to get 1.
\left(7-2\sqrt{10}\right)\left(\sqrt{10}+3\right)
Anything divided by one gives itself.
7\sqrt{10}+21-2\left(\sqrt{10}\right)^{2}-6\sqrt{10}
Apply the distributive property by multiplying each term of 7-2\sqrt{10} by each term of \sqrt{10}+3.
7\sqrt{10}+21-2\times 10-6\sqrt{10}
The square of \sqrt{10} is 10.
7\sqrt{10}+21-20-6\sqrt{10}
Multiply -2 and 10 to get -20.
7\sqrt{10}+1-6\sqrt{10}
Subtract 20 from 21 to get 1.
\sqrt{10}+1
Combine 7\sqrt{10} and -6\sqrt{10} to get \sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}