Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7+4i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+3i.
\frac{\left(7+4i\right)\left(2+3i\right)}{2^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+4i\right)\left(2+3i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{7\times 2+7\times \left(3i\right)+4i\times 2+4\times 3i^{2}}{13}
Multiply complex numbers 7+4i and 2+3i like you multiply binomials.
\frac{7\times 2+7\times \left(3i\right)+4i\times 2+4\times 3\left(-1\right)}{13}
By definition, i^{2} is -1.
\frac{14+21i+8i-12}{13}
Do the multiplications in 7\times 2+7\times \left(3i\right)+4i\times 2+4\times 3\left(-1\right).
\frac{14-12+\left(21+8\right)i}{13}
Combine the real and imaginary parts in 14+21i+8i-12.
\frac{2+29i}{13}
Do the additions in 14-12+\left(21+8\right)i.
\frac{2}{13}+\frac{29}{13}i
Divide 2+29i by 13 to get \frac{2}{13}+\frac{29}{13}i.
Re(\frac{\left(7+4i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)})
Multiply both numerator and denominator of \frac{7+4i}{2-3i} by the complex conjugate of the denominator, 2+3i.
Re(\frac{\left(7+4i\right)\left(2+3i\right)}{2^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(7+4i\right)\left(2+3i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{7\times 2+7\times \left(3i\right)+4i\times 2+4\times 3i^{2}}{13})
Multiply complex numbers 7+4i and 2+3i like you multiply binomials.
Re(\frac{7\times 2+7\times \left(3i\right)+4i\times 2+4\times 3\left(-1\right)}{13})
By definition, i^{2} is -1.
Re(\frac{14+21i+8i-12}{13})
Do the multiplications in 7\times 2+7\times \left(3i\right)+4i\times 2+4\times 3\left(-1\right).
Re(\frac{14-12+\left(21+8\right)i}{13})
Combine the real and imaginary parts in 14+21i+8i-12.
Re(\frac{2+29i}{13})
Do the additions in 14-12+\left(21+8\right)i.
Re(\frac{2}{13}+\frac{29}{13}i)
Divide 2+29i by 13 to get \frac{2}{13}+\frac{29}{13}i.
\frac{2}{13}
The real part of \frac{2}{13}+\frac{29}{13}i is \frac{2}{13}.