Evaluate
\frac{7-\sqrt{7}}{6}\approx 0.725708115
Factor
\frac{\sqrt{7} {(\sqrt{7} - 1)}}{6} = 0.7257081148225684
Quiz
Arithmetic
5 problems similar to:
\frac{ 7+ \sqrt{ 7 } }{ { \left( \sqrt{ 7 } +1 \right) }^{ 2 } }
Share
Copied to clipboard
\frac{7+\sqrt{7}}{\left(\sqrt{7}\right)^{2}+2\sqrt{7}+1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+1\right)^{2}.
\frac{7+\sqrt{7}}{7+2\sqrt{7}+1}
The square of \sqrt{7} is 7.
\frac{7+\sqrt{7}}{8+2\sqrt{7}}
Add 7 and 1 to get 8.
\frac{\left(7+\sqrt{7}\right)\left(8-2\sqrt{7}\right)}{\left(8+2\sqrt{7}\right)\left(8-2\sqrt{7}\right)}
Rationalize the denominator of \frac{7+\sqrt{7}}{8+2\sqrt{7}} by multiplying numerator and denominator by 8-2\sqrt{7}.
\frac{\left(7+\sqrt{7}\right)\left(8-2\sqrt{7}\right)}{8^{2}-\left(2\sqrt{7}\right)^{2}}
Consider \left(8+2\sqrt{7}\right)\left(8-2\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+\sqrt{7}\right)\left(8-2\sqrt{7}\right)}{64-\left(2\sqrt{7}\right)^{2}}
Calculate 8 to the power of 2 and get 64.
\frac{\left(7+\sqrt{7}\right)\left(8-2\sqrt{7}\right)}{64-2^{2}\left(\sqrt{7}\right)^{2}}
Expand \left(2\sqrt{7}\right)^{2}.
\frac{\left(7+\sqrt{7}\right)\left(8-2\sqrt{7}\right)}{64-4\left(\sqrt{7}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(7+\sqrt{7}\right)\left(8-2\sqrt{7}\right)}{64-4\times 7}
The square of \sqrt{7} is 7.
\frac{\left(7+\sqrt{7}\right)\left(8-2\sqrt{7}\right)}{64-28}
Multiply 4 and 7 to get 28.
\frac{\left(7+\sqrt{7}\right)\left(8-2\sqrt{7}\right)}{36}
Subtract 28 from 64 to get 36.
\frac{56-6\sqrt{7}-2\left(\sqrt{7}\right)^{2}}{36}
Use the distributive property to multiply 7+\sqrt{7} by 8-2\sqrt{7} and combine like terms.
\frac{56-6\sqrt{7}-2\times 7}{36}
The square of \sqrt{7} is 7.
\frac{56-6\sqrt{7}-14}{36}
Multiply -2 and 7 to get -14.
\frac{42-6\sqrt{7}}{36}
Subtract 14 from 56 to get 42.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}