Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\frac{\frac{21+1}{3}}{\frac{2\times 2+1}{2}\times \frac{1\times 5+3}{5}}-\frac{3}{8}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Multiply 7 and 3 to get 21.
\frac{\frac{22}{3}}{\frac{2\times 2+1}{2}\times \frac{1\times 5+3}{5}}-\frac{3}{8}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Add 21 and 1 to get 22.
\frac{\frac{22}{3}}{\frac{4+1}{2}\times \frac{1\times 5+3}{5}}-\frac{3}{8}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Multiply 2 and 2 to get 4.
\frac{\frac{22}{3}}{\frac{5}{2}\times \frac{1\times 5+3}{5}}-\frac{3}{8}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Add 4 and 1 to get 5.
\frac{\frac{22}{3}}{\frac{5}{2}\times \frac{5+3}{5}}-\frac{3}{8}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Multiply 1 and 5 to get 5.
\frac{\frac{22}{3}}{\frac{5}{2}\times \frac{8}{5}}-\frac{3}{8}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Add 5 and 3 to get 8.
\frac{\frac{22}{3}}{\frac{5\times 8}{2\times 5}}-\frac{3}{8}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Multiply \frac{5}{2} times \frac{8}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{22}{3}}{\frac{8}{2}}-\frac{3}{8}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Cancel out 5 in both numerator and denominator.
\frac{\frac{22}{3}}{4}-\frac{3}{8}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Divide 8 by 2 to get 4.
\frac{22}{3\times 4}-\frac{3}{8}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Express \frac{\frac{22}{3}}{4} as a single fraction.
\frac{22}{12}-\frac{3}{8}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Multiply 3 and 4 to get 12.
\frac{11}{6}-\frac{3}{8}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Reduce the fraction \frac{22}{12} to lowest terms by extracting and canceling out 2.
\frac{44}{24}-\frac{9}{24}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Least common multiple of 6 and 8 is 24. Convert \frac{11}{6} and \frac{3}{8} to fractions with denominator 24.
\frac{44-9}{24}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Since \frac{44}{24} and \frac{9}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{35}{24}+\frac{1}{7}\times \frac{1\times 4+3}{4}-\frac{5}{24}
Subtract 9 from 44 to get 35.
\frac{35}{24}+\frac{1}{7}\times \frac{4+3}{4}-\frac{5}{24}
Multiply 1 and 4 to get 4.
\frac{35}{24}+\frac{1}{7}\times \frac{7}{4}-\frac{5}{24}
Add 4 and 3 to get 7.
\frac{35}{24}+\frac{1\times 7}{7\times 4}-\frac{5}{24}
Multiply \frac{1}{7} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{35}{24}+\frac{1}{4}-\frac{5}{24}
Cancel out 7 in both numerator and denominator.
\frac{35}{24}+\frac{6}{24}-\frac{5}{24}
Least common multiple of 24 and 4 is 24. Convert \frac{35}{24} and \frac{1}{4} to fractions with denominator 24.
\frac{35+6}{24}-\frac{5}{24}
Since \frac{35}{24} and \frac{6}{24} have the same denominator, add them by adding their numerators.
\frac{41}{24}-\frac{5}{24}
Add 35 and 6 to get 41.
\frac{41-5}{24}
Since \frac{41}{24} and \frac{5}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{36}{24}
Subtract 5 from 41 to get 36.
\frac{3}{2}
Reduce the fraction \frac{36}{24} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}