Verify
false
Share
Copied to clipboard
\frac{77}{88}+\frac{36}{88}-5=\frac{2}{22}
Least common multiple of 8 and 22 is 88. Convert \frac{7}{8} and \frac{9}{22} to fractions with denominator 88.
\frac{77+36}{88}-5=\frac{2}{22}
Since \frac{77}{88} and \frac{36}{88} have the same denominator, add them by adding their numerators.
\frac{113}{88}-5=\frac{2}{22}
Add 77 and 36 to get 113.
\frac{113}{88}-\frac{440}{88}=\frac{2}{22}
Convert 5 to fraction \frac{440}{88}.
\frac{113-440}{88}=\frac{2}{22}
Since \frac{113}{88} and \frac{440}{88} have the same denominator, subtract them by subtracting their numerators.
-\frac{327}{88}=\frac{2}{22}
Subtract 440 from 113 to get -327.
-\frac{327}{88}=\frac{1}{11}
Reduce the fraction \frac{2}{22} to lowest terms by extracting and canceling out 2.
-\frac{327}{88}=\frac{8}{88}
Least common multiple of 88 and 11 is 88. Convert -\frac{327}{88} and \frac{1}{11} to fractions with denominator 88.
\text{false}
Compare -\frac{327}{88} and \frac{8}{88}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}