Solve for x
x=\frac{14\sqrt{82731}}{12535e}\approx 0.118179828
Graph
Share
Copied to clipboard
\frac{7}{5x\sqrt{\frac{2507}{132}}}=e
Reduce the fraction \frac{7521}{396} to lowest terms by extracting and canceling out 3.
\frac{7}{5x\times \frac{\sqrt{2507}}{\sqrt{132}}}=e
Rewrite the square root of the division \sqrt{\frac{2507}{132}} as the division of square roots \frac{\sqrt{2507}}{\sqrt{132}}.
\frac{7}{5x\times \frac{\sqrt{2507}}{2\sqrt{33}}}=e
Factor 132=2^{2}\times 33. Rewrite the square root of the product \sqrt{2^{2}\times 33} as the product of square roots \sqrt{2^{2}}\sqrt{33}. Take the square root of 2^{2}.
\frac{7}{5x\times \frac{\sqrt{2507}\sqrt{33}}{2\left(\sqrt{33}\right)^{2}}}=e
Rationalize the denominator of \frac{\sqrt{2507}}{2\sqrt{33}} by multiplying numerator and denominator by \sqrt{33}.
\frac{7}{5x\times \frac{\sqrt{2507}\sqrt{33}}{2\times 33}}=e
The square of \sqrt{33} is 33.
\frac{7}{5x\times \frac{\sqrt{82731}}{2\times 33}}=e
To multiply \sqrt{2507} and \sqrt{33}, multiply the numbers under the square root.
\frac{7}{5x\times \frac{\sqrt{82731}}{66}}=e
Multiply 2 and 33 to get 66.
\frac{7}{\frac{5\sqrt{82731}}{66}x}=e
Express 5\times \frac{\sqrt{82731}}{66} as a single fraction.
\frac{7}{\frac{5\sqrt{82731}x}{66}}=e
Express \frac{5\sqrt{82731}}{66}x as a single fraction.
\frac{7\times 66}{5\sqrt{82731}x}=e
Divide 7 by \frac{5\sqrt{82731}x}{66} by multiplying 7 by the reciprocal of \frac{5\sqrt{82731}x}{66}.
\frac{7\times 66\sqrt{82731}}{5\left(\sqrt{82731}\right)^{2}x}=e
Rationalize the denominator of \frac{7\times 66}{5\sqrt{82731}x} by multiplying numerator and denominator by \sqrt{82731}.
\frac{7\times 66\sqrt{82731}}{5\times 82731x}=e
The square of \sqrt{82731} is 82731.
\frac{462\sqrt{82731}}{5\times 82731x}=e
Multiply 7 and 66 to get 462.
\frac{462\sqrt{82731}}{413655x}=e
Multiply 5 and 82731 to get 413655.
\frac{14\sqrt{82731}}{12535x}=e
Cancel out 33 in both numerator and denominator.
14\sqrt{82731}=e\times 12535x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12535x.
14\sqrt{82731}=12535ex
Reorder the terms.
12535ex=14\sqrt{82731}
Swap sides so that all variable terms are on the left hand side.
\frac{12535ex}{12535e}=\frac{14\sqrt{82731}}{12535e}
Divide both sides by 12535e.
x=\frac{14\sqrt{82731}}{12535e}
Dividing by 12535e undoes the multiplication by 12535e.
x=\frac{14\sqrt{82731}}{12535e}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}