Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\left(4+\sqrt{2}\right)}{\left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right)}
Rationalize the denominator of \frac{7}{4-\sqrt{2}} by multiplying numerator and denominator by 4+\sqrt{2}.
\frac{7\left(4+\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(4+\sqrt{2}\right)}{16-2}
Square 4. Square \sqrt{2}.
\frac{7\left(4+\sqrt{2}\right)}{14}
Subtract 2 from 16 to get 14.
\frac{1}{2}\left(4+\sqrt{2}\right)
Divide 7\left(4+\sqrt{2}\right) by 14 to get \frac{1}{2}\left(4+\sqrt{2}\right).
\frac{1}{2}\times 4+\frac{1}{2}\sqrt{2}
Use the distributive property to multiply \frac{1}{2} by 4+\sqrt{2}.
\frac{4}{2}+\frac{1}{2}\sqrt{2}
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
2+\frac{1}{2}\sqrt{2}
Divide 4 by 2 to get 2.