Solve for x
x=\frac{204-2y}{35}
Solve for y
y=-\frac{35x}{2}+102
Graph
Share
Copied to clipboard
\frac{7}{4}x=10.2-\frac{1}{10}y
Subtract \frac{1}{10}y from both sides.
\frac{7}{4}x=-\frac{y}{10}+10.2
The equation is in standard form.
\frac{\frac{7}{4}x}{\frac{7}{4}}=\frac{-\frac{y}{10}+\frac{51}{5}}{\frac{7}{4}}
Divide both sides of the equation by \frac{7}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{y}{10}+\frac{51}{5}}{\frac{7}{4}}
Dividing by \frac{7}{4} undoes the multiplication by \frac{7}{4}.
x=\frac{204-2y}{35}
Divide \frac{51}{5}-\frac{y}{10} by \frac{7}{4} by multiplying \frac{51}{5}-\frac{y}{10} by the reciprocal of \frac{7}{4}.
\frac{1}{10}y=10.2-\frac{7}{4}x
Subtract \frac{7}{4}x from both sides.
\frac{1}{10}y=-\frac{7x}{4}+10.2
The equation is in standard form.
\frac{\frac{1}{10}y}{\frac{1}{10}}=\frac{-\frac{7x}{4}+\frac{51}{5}}{\frac{1}{10}}
Multiply both sides by 10.
y=\frac{-\frac{7x}{4}+\frac{51}{5}}{\frac{1}{10}}
Dividing by \frac{1}{10} undoes the multiplication by \frac{1}{10}.
y=-\frac{35x}{2}+102
Divide \frac{51}{5}-\frac{7x}{4} by \frac{1}{10} by multiplying \frac{51}{5}-\frac{7x}{4} by the reciprocal of \frac{1}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}