Evaluate
\frac{2}{15}\approx 0.133333333
Factor
\frac{2}{3 \cdot 5} = 0.13333333333333333
Share
Copied to clipboard
\frac{7}{4}\times \frac{3}{5}-\left(\frac{1}{4}+\frac{2}{3}\right)
Divide \frac{7}{4} by \frac{5}{3} by multiplying \frac{7}{4} by the reciprocal of \frac{5}{3}.
\frac{7\times 3}{4\times 5}-\left(\frac{1}{4}+\frac{2}{3}\right)
Multiply \frac{7}{4} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{21}{20}-\left(\frac{1}{4}+\frac{2}{3}\right)
Do the multiplications in the fraction \frac{7\times 3}{4\times 5}.
\frac{21}{20}-\left(\frac{3}{12}+\frac{8}{12}\right)
Least common multiple of 4 and 3 is 12. Convert \frac{1}{4} and \frac{2}{3} to fractions with denominator 12.
\frac{21}{20}-\frac{3+8}{12}
Since \frac{3}{12} and \frac{8}{12} have the same denominator, add them by adding their numerators.
\frac{21}{20}-\frac{11}{12}
Add 3 and 8 to get 11.
\frac{63}{60}-\frac{55}{60}
Least common multiple of 20 and 12 is 60. Convert \frac{21}{20} and \frac{11}{12} to fractions with denominator 60.
\frac{63-55}{60}
Since \frac{63}{60} and \frac{55}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{8}{60}
Subtract 55 from 63 to get 8.
\frac{2}{15}
Reduce the fraction \frac{8}{60} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}