Solve for x
x=-\frac{20y+27}{2\left(27y+41\right)}
y\neq -2\text{ and }y\neq -\frac{41}{27}
Solve for y
y=-\frac{82x+27}{2\left(27x+10\right)}
x\neq -\frac{1}{2}\text{ and }x\neq -\frac{10}{27}
Graph
Share
Copied to clipboard
\left(y+2\right)\times 7+\left(2x+1\right)\times 13=27\left(y+2\right)\left(2x+1\right)
Variable x cannot be equal to -\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(y+2\right)\left(2x+1\right), the least common multiple of 2x+1,y+2.
7y+14+\left(2x+1\right)\times 13=27\left(y+2\right)\left(2x+1\right)
Use the distributive property to multiply y+2 by 7.
7y+14+26x+13=27\left(y+2\right)\left(2x+1\right)
Use the distributive property to multiply 2x+1 by 13.
7y+27+26x=27\left(y+2\right)\left(2x+1\right)
Add 14 and 13 to get 27.
7y+27+26x=\left(27y+54\right)\left(2x+1\right)
Use the distributive property to multiply 27 by y+2.
7y+27+26x=54yx+27y+108x+54
Use the distributive property to multiply 27y+54 by 2x+1.
7y+27+26x-54yx=27y+108x+54
Subtract 54yx from both sides.
7y+27+26x-54yx-108x=27y+54
Subtract 108x from both sides.
7y+27-82x-54yx=27y+54
Combine 26x and -108x to get -82x.
27-82x-54yx=27y+54-7y
Subtract 7y from both sides.
27-82x-54yx=20y+54
Combine 27y and -7y to get 20y.
-82x-54yx=20y+54-27
Subtract 27 from both sides.
-82x-54yx=20y+27
Subtract 27 from 54 to get 27.
\left(-82-54y\right)x=20y+27
Combine all terms containing x.
\left(-54y-82\right)x=20y+27
The equation is in standard form.
\frac{\left(-54y-82\right)x}{-54y-82}=\frac{20y+27}{-54y-82}
Divide both sides by -82-54y.
x=\frac{20y+27}{-54y-82}
Dividing by -82-54y undoes the multiplication by -82-54y.
x=-\frac{20y+27}{2\left(27y+41\right)}
Divide 20y+27 by -82-54y.
x=-\frac{20y+27}{2\left(27y+41\right)}\text{, }x\neq -\frac{1}{2}
Variable x cannot be equal to -\frac{1}{2}.
\left(y+2\right)\times 7+\left(2x+1\right)\times 13=27\left(y+2\right)\left(2x+1\right)
Variable y cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by \left(y+2\right)\left(2x+1\right), the least common multiple of 2x+1,y+2.
7y+14+\left(2x+1\right)\times 13=27\left(y+2\right)\left(2x+1\right)
Use the distributive property to multiply y+2 by 7.
7y+14+26x+13=27\left(y+2\right)\left(2x+1\right)
Use the distributive property to multiply 2x+1 by 13.
7y+27+26x=27\left(y+2\right)\left(2x+1\right)
Add 14 and 13 to get 27.
7y+27+26x=\left(27y+54\right)\left(2x+1\right)
Use the distributive property to multiply 27 by y+2.
7y+27+26x=54yx+27y+108x+54
Use the distributive property to multiply 27y+54 by 2x+1.
7y+27+26x-54yx=27y+108x+54
Subtract 54yx from both sides.
7y+27+26x-54yx-27y=108x+54
Subtract 27y from both sides.
-20y+27+26x-54yx=108x+54
Combine 7y and -27y to get -20y.
-20y+26x-54yx=108x+54-27
Subtract 27 from both sides.
-20y+26x-54yx=108x+27
Subtract 27 from 54 to get 27.
-20y-54yx=108x+27-26x
Subtract 26x from both sides.
-20y-54yx=82x+27
Combine 108x and -26x to get 82x.
\left(-20-54x\right)y=82x+27
Combine all terms containing y.
\left(-54x-20\right)y=82x+27
The equation is in standard form.
\frac{\left(-54x-20\right)y}{-54x-20}=\frac{82x+27}{-54x-20}
Divide both sides by -54x-20.
y=\frac{82x+27}{-54x-20}
Dividing by -54x-20 undoes the multiplication by -54x-20.
y=-\frac{82x+27}{2\left(27x+10\right)}
Divide 27+82x by -54x-20.
y=-\frac{82x+27}{2\left(27x+10\right)}\text{, }y\neq -2
Variable y cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}