Solve for m
m=8
Share
Copied to clipboard
\frac{7}{2}m+\frac{7}{2}\times 12=\frac{5}{2}\left(20+m\right)
Use the distributive property to multiply \frac{7}{2} by m+12.
\frac{7}{2}m+\frac{7\times 12}{2}=\frac{5}{2}\left(20+m\right)
Express \frac{7}{2}\times 12 as a single fraction.
\frac{7}{2}m+\frac{84}{2}=\frac{5}{2}\left(20+m\right)
Multiply 7 and 12 to get 84.
\frac{7}{2}m+42=\frac{5}{2}\left(20+m\right)
Divide 84 by 2 to get 42.
\frac{7}{2}m+42=\frac{5}{2}\times 20+\frac{5}{2}m
Use the distributive property to multiply \frac{5}{2} by 20+m.
\frac{7}{2}m+42=\frac{5\times 20}{2}+\frac{5}{2}m
Express \frac{5}{2}\times 20 as a single fraction.
\frac{7}{2}m+42=\frac{100}{2}+\frac{5}{2}m
Multiply 5 and 20 to get 100.
\frac{7}{2}m+42=50+\frac{5}{2}m
Divide 100 by 2 to get 50.
\frac{7}{2}m+42-\frac{5}{2}m=50
Subtract \frac{5}{2}m from both sides.
m+42=50
Combine \frac{7}{2}m and -\frac{5}{2}m to get m.
m=50-42
Subtract 42 from both sides.
m=8
Subtract 42 from 50 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}