Solve for x
x = \frac{5 \sqrt{35}}{7} \approx 4.225771274
x = -\frac{5 \sqrt{35}}{7} \approx -4.225771274
Graph
Share
Copied to clipboard
\frac{7}{10}\times 25=10\times 0.5+\frac{7}{10}x^{2}
Calculate 5 to the power of 2 and get 25.
\frac{35}{2}=10\times 0.5+\frac{7}{10}x^{2}
Multiply \frac{7}{10} and 25 to get \frac{35}{2}.
\frac{35}{2}=5+\frac{7}{10}x^{2}
Multiply 10 and 0.5 to get 5.
5+\frac{7}{10}x^{2}=\frac{35}{2}
Swap sides so that all variable terms are on the left hand side.
\frac{7}{10}x^{2}=\frac{35}{2}-5
Subtract 5 from both sides.
\frac{7}{10}x^{2}=\frac{25}{2}
Subtract 5 from \frac{35}{2} to get \frac{25}{2}.
x^{2}=\frac{25}{2}\times \frac{10}{7}
Multiply both sides by \frac{10}{7}, the reciprocal of \frac{7}{10}.
x^{2}=\frac{125}{7}
Multiply \frac{25}{2} and \frac{10}{7} to get \frac{125}{7}.
x=\frac{5\sqrt{35}}{7} x=-\frac{5\sqrt{35}}{7}
Take the square root of both sides of the equation.
\frac{7}{10}\times 25=10\times 0.5+\frac{7}{10}x^{2}
Calculate 5 to the power of 2 and get 25.
\frac{35}{2}=10\times 0.5+\frac{7}{10}x^{2}
Multiply \frac{7}{10} and 25 to get \frac{35}{2}.
\frac{35}{2}=5+\frac{7}{10}x^{2}
Multiply 10 and 0.5 to get 5.
5+\frac{7}{10}x^{2}=\frac{35}{2}
Swap sides so that all variable terms are on the left hand side.
5+\frac{7}{10}x^{2}-\frac{35}{2}=0
Subtract \frac{35}{2} from both sides.
-\frac{25}{2}+\frac{7}{10}x^{2}=0
Subtract \frac{35}{2} from 5 to get -\frac{25}{2}.
\frac{7}{10}x^{2}-\frac{25}{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{7}{10}\left(-\frac{25}{2}\right)}}{2\times \frac{7}{10}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{7}{10} for a, 0 for b, and -\frac{25}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{7}{10}\left(-\frac{25}{2}\right)}}{2\times \frac{7}{10}}
Square 0.
x=\frac{0±\sqrt{-\frac{14}{5}\left(-\frac{25}{2}\right)}}{2\times \frac{7}{10}}
Multiply -4 times \frac{7}{10}.
x=\frac{0±\sqrt{35}}{2\times \frac{7}{10}}
Multiply -\frac{14}{5} times -\frac{25}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\sqrt{35}}{\frac{7}{5}}
Multiply 2 times \frac{7}{10}.
x=\frac{5\sqrt{35}}{7}
Now solve the equation x=\frac{0±\sqrt{35}}{\frac{7}{5}} when ± is plus.
x=-\frac{5\sqrt{35}}{7}
Now solve the equation x=\frac{0±\sqrt{35}}{\frac{7}{5}} when ± is minus.
x=\frac{5\sqrt{35}}{7} x=-\frac{5\sqrt{35}}{7}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}