Solve for x
x=50
Graph
Quiz
Algebra
5 problems similar to:
\frac{ 7 }{ (x-1) } - \frac{ 2 }{ \sqrt{ x-1 } } + \frac{ 1 }{ 7 } =0
Share
Copied to clipboard
7\times 7-7\left(x-1\right)^{\frac{1}{2}}\times 2+7\left(x-1\right)\times \frac{1}{7}=0
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 7\left(x-1\right), the least common multiple of x-1,7.
49-7\left(x-1\right)^{\frac{1}{2}}\times 2+7\left(x-1\right)\times \frac{1}{7}=0
Multiply 7 and 7 to get 49.
49-14\left(x-1\right)^{\frac{1}{2}}+7\left(x-1\right)\times \frac{1}{7}=0
Multiply 7 and 2 to get 14.
49-14\left(x-1\right)^{\frac{1}{2}}+x-1=0
Multiply 7 and \frac{1}{7} to get 1.
48-14\left(x-1\right)^{\frac{1}{2}}+x=0
Subtract 1 from 49 to get 48.
x-14\sqrt{x-1}+48=0
Reorder the terms.
x-14\sqrt{x-1}=-48
Subtract 48 from both sides. Anything subtracted from zero gives its negation.
-14\sqrt{x-1}=-48-x
Subtract x from both sides of the equation.
\left(-14\sqrt{x-1}\right)^{2}=\left(-48-x\right)^{2}
Square both sides of the equation.
\left(-14\right)^{2}\left(\sqrt{x-1}\right)^{2}=\left(-48-x\right)^{2}
Expand \left(-14\sqrt{x-1}\right)^{2}.
196\left(\sqrt{x-1}\right)^{2}=\left(-48-x\right)^{2}
Calculate -14 to the power of 2 and get 196.
196\left(x-1\right)=\left(-48-x\right)^{2}
Calculate \sqrt{x-1} to the power of 2 and get x-1.
196x-196=\left(-48-x\right)^{2}
Use the distributive property to multiply 196 by x-1.
196x-196=2304+96x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-48-x\right)^{2}.
196x-196-96x=2304+x^{2}
Subtract 96x from both sides.
100x-196=2304+x^{2}
Combine 196x and -96x to get 100x.
100x-196-x^{2}=2304
Subtract x^{2} from both sides.
-x^{2}+100x-196=2304
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+100x-196-2304=2304-2304
Subtract 2304 from both sides of the equation.
-x^{2}+100x-196-2304=0
Subtracting 2304 from itself leaves 0.
-x^{2}+100x-2500=0
Subtract 2304 from -196.
x=\frac{-100±\sqrt{100^{2}-4\left(-1\right)\left(-2500\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 100 for b, and -2500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-1\right)\left(-2500\right)}}{2\left(-1\right)}
Square 100.
x=\frac{-100±\sqrt{10000+4\left(-2500\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-100±\sqrt{10000-10000}}{2\left(-1\right)}
Multiply 4 times -2500.
x=\frac{-100±\sqrt{0}}{2\left(-1\right)}
Add 10000 to -10000.
x=-\frac{100}{2\left(-1\right)}
Take the square root of 0.
x=-\frac{100}{-2}
Multiply 2 times -1.
x=50
Divide -100 by -2.
\frac{7}{50-1}-\frac{2}{\sqrt{50-1}}+\frac{1}{7}=0
Substitute 50 for x in the equation \frac{7}{x-1}-\frac{2}{\sqrt{x-1}}+\frac{1}{7}=0.
0=0
Simplify. The value x=50 satisfies the equation.
x=50
Equation -14\sqrt{x-1}=-x-48 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}