Evaluate
\frac{1}{2}-\frac{3}{8x}
Expand
\frac{1}{2}-\frac{3}{8x}
Graph
Share
Copied to clipboard
\frac{3x}{x^{2}-\left(3x\right)^{2}}-\frac{x-3x}{x+3x}
Combine 6x and -3x to get 3x.
\frac{3x}{x^{2}-3^{2}x^{2}}-\frac{x-3x}{x+3x}
Expand \left(3x\right)^{2}.
\frac{3x}{x^{2}-9x^{2}}-\frac{x-3x}{x+3x}
Calculate 3 to the power of 2 and get 9.
\frac{3x}{-8x^{2}}-\frac{x-3x}{x+3x}
Combine x^{2} and -9x^{2} to get -8x^{2}.
\frac{3}{-8x}-\frac{x-3x}{x+3x}
Cancel out x in both numerator and denominator.
\frac{3}{-8x}-\frac{-2x}{x+3x}
Combine x and -3x to get -2x.
\frac{3}{-8x}-\frac{-2x}{4x}
Combine x and 3x to get 4x.
\frac{3}{-8x}-\frac{-1}{2}
Cancel out 2x in both numerator and denominator.
\frac{3}{-8x}-\left(-\frac{1}{2}\right)
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{3}{-8x}+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{3\left(-1\right)}{8x}+\frac{4x}{8x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -8x and 2 is 8x. Multiply \frac{3}{-8x} times \frac{-1}{-1}. Multiply \frac{1}{2} times \frac{4x}{4x}.
\frac{3\left(-1\right)+4x}{8x}
Since \frac{3\left(-1\right)}{8x} and \frac{4x}{8x} have the same denominator, add them by adding their numerators.
\frac{-3+4x}{8x}
Do the multiplications in 3\left(-1\right)+4x.
\frac{3x}{x^{2}-\left(3x\right)^{2}}-\frac{x-3x}{x+3x}
Combine 6x and -3x to get 3x.
\frac{3x}{x^{2}-3^{2}x^{2}}-\frac{x-3x}{x+3x}
Expand \left(3x\right)^{2}.
\frac{3x}{x^{2}-9x^{2}}-\frac{x-3x}{x+3x}
Calculate 3 to the power of 2 and get 9.
\frac{3x}{-8x^{2}}-\frac{x-3x}{x+3x}
Combine x^{2} and -9x^{2} to get -8x^{2}.
\frac{3}{-8x}-\frac{x-3x}{x+3x}
Cancel out x in both numerator and denominator.
\frac{3}{-8x}-\frac{-2x}{x+3x}
Combine x and -3x to get -2x.
\frac{3}{-8x}-\frac{-2x}{4x}
Combine x and 3x to get 4x.
\frac{3}{-8x}-\frac{-1}{2}
Cancel out 2x in both numerator and denominator.
\frac{3}{-8x}-\left(-\frac{1}{2}\right)
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{3}{-8x}+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{3\left(-1\right)}{8x}+\frac{4x}{8x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -8x and 2 is 8x. Multiply \frac{3}{-8x} times \frac{-1}{-1}. Multiply \frac{1}{2} times \frac{4x}{4x}.
\frac{3\left(-1\right)+4x}{8x}
Since \frac{3\left(-1\right)}{8x} and \frac{4x}{8x} have the same denominator, add them by adding their numerators.
\frac{-3+4x}{8x}
Do the multiplications in 3\left(-1\right)+4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}