Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3x}{x^{2}-\left(3x\right)^{2}}-\frac{x-3x}{x+3x}
Combine 6x and -3x to get 3x.
\frac{3x}{x^{2}-3^{2}x^{2}}-\frac{x-3x}{x+3x}
Expand \left(3x\right)^{2}.
\frac{3x}{x^{2}-9x^{2}}-\frac{x-3x}{x+3x}
Calculate 3 to the power of 2 and get 9.
\frac{3x}{-8x^{2}}-\frac{x-3x}{x+3x}
Combine x^{2} and -9x^{2} to get -8x^{2}.
\frac{3}{-8x}-\frac{x-3x}{x+3x}
Cancel out x in both numerator and denominator.
\frac{3}{-8x}-\frac{-2x}{x+3x}
Combine x and -3x to get -2x.
\frac{3}{-8x}-\frac{-2x}{4x}
Combine x and 3x to get 4x.
\frac{3}{-8x}-\frac{-1}{2}
Cancel out 2x in both numerator and denominator.
\frac{3}{-8x}-\left(-\frac{1}{2}\right)
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{3}{-8x}+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{3\left(-1\right)}{8x}+\frac{4x}{8x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -8x and 2 is 8x. Multiply \frac{3}{-8x} times \frac{-1}{-1}. Multiply \frac{1}{2} times \frac{4x}{4x}.
\frac{3\left(-1\right)+4x}{8x}
Since \frac{3\left(-1\right)}{8x} and \frac{4x}{8x} have the same denominator, add them by adding their numerators.
\frac{-3+4x}{8x}
Do the multiplications in 3\left(-1\right)+4x.
\frac{3x}{x^{2}-\left(3x\right)^{2}}-\frac{x-3x}{x+3x}
Combine 6x and -3x to get 3x.
\frac{3x}{x^{2}-3^{2}x^{2}}-\frac{x-3x}{x+3x}
Expand \left(3x\right)^{2}.
\frac{3x}{x^{2}-9x^{2}}-\frac{x-3x}{x+3x}
Calculate 3 to the power of 2 and get 9.
\frac{3x}{-8x^{2}}-\frac{x-3x}{x+3x}
Combine x^{2} and -9x^{2} to get -8x^{2}.
\frac{3}{-8x}-\frac{x-3x}{x+3x}
Cancel out x in both numerator and denominator.
\frac{3}{-8x}-\frac{-2x}{x+3x}
Combine x and -3x to get -2x.
\frac{3}{-8x}-\frac{-2x}{4x}
Combine x and 3x to get 4x.
\frac{3}{-8x}-\frac{-1}{2}
Cancel out 2x in both numerator and denominator.
\frac{3}{-8x}-\left(-\frac{1}{2}\right)
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{3}{-8x}+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{3\left(-1\right)}{8x}+\frac{4x}{8x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -8x and 2 is 8x. Multiply \frac{3}{-8x} times \frac{-1}{-1}. Multiply \frac{1}{2} times \frac{4x}{4x}.
\frac{3\left(-1\right)+4x}{8x}
Since \frac{3\left(-1\right)}{8x} and \frac{4x}{8x} have the same denominator, add them by adding their numerators.
\frac{-3+4x}{8x}
Do the multiplications in 3\left(-1\right)+4x.