Solve for x
x = -\frac{30}{23} = -1\frac{7}{23} \approx -1.304347826
Graph
Share
Copied to clipboard
\left(5x-6\right)\left(6x-1\right)-18\times 3\left(x+2\right)=\left(10x-12\right)\left(1+3x\right)
Variable x cannot be equal to \frac{6}{5} since division by zero is not defined. Multiply both sides of the equation by 18\left(5x-6\right), the least common multiple of 18,5x-6,9.
30x^{2}-41x+6-18\times 3\left(x+2\right)=\left(10x-12\right)\left(1+3x\right)
Use the distributive property to multiply 5x-6 by 6x-1 and combine like terms.
30x^{2}-41x+6-54\left(x+2\right)=\left(10x-12\right)\left(1+3x\right)
Multiply -18 and 3 to get -54.
30x^{2}-41x+6-54x-108=\left(10x-12\right)\left(1+3x\right)
Use the distributive property to multiply -54 by x+2.
30x^{2}-95x+6-108=\left(10x-12\right)\left(1+3x\right)
Combine -41x and -54x to get -95x.
30x^{2}-95x-102=\left(10x-12\right)\left(1+3x\right)
Subtract 108 from 6 to get -102.
30x^{2}-95x-102=-26x+30x^{2}-12
Use the distributive property to multiply 10x-12 by 1+3x and combine like terms.
30x^{2}-95x-102+26x=30x^{2}-12
Add 26x to both sides.
30x^{2}-69x-102=30x^{2}-12
Combine -95x and 26x to get -69x.
30x^{2}-69x-102-30x^{2}=-12
Subtract 30x^{2} from both sides.
-69x-102=-12
Combine 30x^{2} and -30x^{2} to get 0.
-69x=-12+102
Add 102 to both sides.
-69x=90
Add -12 and 102 to get 90.
x=\frac{90}{-69}
Divide both sides by -69.
x=-\frac{30}{23}
Reduce the fraction \frac{90}{-69} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}