Evaluate
-2x+\frac{7}{2}+\frac{3}{2x}
Expand
-2x+\frac{7}{2}+\frac{3}{2x}
Graph
Share
Copied to clipboard
\frac{6\left(x+1\right)}{4x}-6+8+x\left(-2\right)
Factor the expressions that are not already factored in \frac{6x+6}{4x}.
\frac{3\left(x+1\right)}{2x}-6+8+x\left(-2\right)
Cancel out 2 in both numerator and denominator.
\frac{3\left(x+1\right)}{2x}+2+x\left(-2\right)
Add -6 and 8 to get 2.
\frac{3\left(x+1\right)}{2x}+\frac{\left(2+x\left(-2\right)\right)\times 2x}{2x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2+x\left(-2\right) times \frac{2x}{2x}.
\frac{3\left(x+1\right)+\left(2+x\left(-2\right)\right)\times 2x}{2x}
Since \frac{3\left(x+1\right)}{2x} and \frac{\left(2+x\left(-2\right)\right)\times 2x}{2x} have the same denominator, add them by adding their numerators.
\frac{3x+3+4x-4x^{2}}{2x}
Do the multiplications in 3\left(x+1\right)+\left(2+x\left(-2\right)\right)\times 2x.
\frac{7x+3-4x^{2}}{2x}
Combine like terms in 3x+3+4x-4x^{2}.
\frac{-4\left(x-\left(-\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{2x}
Factor the expressions that are not already factored in \frac{7x+3-4x^{2}}{2x}.
\frac{-2\left(x-\left(-\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{x}
Cancel out 2 in both numerator and denominator.
\frac{-2\left(x-\left(-\frac{1}{8}\sqrt{97}\right)-\frac{7}{8}\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{x}
To find the opposite of -\frac{1}{8}\sqrt{97}+\frac{7}{8}, find the opposite of each term.
\frac{-2\left(x+\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{x}
The opposite of -\frac{1}{8}\sqrt{97} is \frac{1}{8}\sqrt{97}.
\frac{-2\left(x+\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
To find the opposite of \frac{1}{8}\sqrt{97}+\frac{7}{8}, find the opposite of each term.
\frac{\left(-2x-2\times \frac{1}{8}\sqrt{97}-2\left(-\frac{7}{8}\right)\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Use the distributive property to multiply -2 by x+\frac{1}{8}\sqrt{97}-\frac{7}{8}.
\frac{\left(-2x+\frac{-2}{8}\sqrt{97}-2\left(-\frac{7}{8}\right)\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Multiply -2 and \frac{1}{8} to get \frac{-2}{8}.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}-2\left(-\frac{7}{8}\right)\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Reduce the fraction \frac{-2}{8} to lowest terms by extracting and canceling out 2.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}+\frac{-2\left(-7\right)}{8}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Express -2\left(-\frac{7}{8}\right) as a single fraction.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}+\frac{14}{8}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Multiply -2 and -7 to get 14.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}+\frac{7}{4}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Reduce the fraction \frac{14}{8} to lowest terms by extracting and canceling out 2.
\frac{-2x^{2}-2x\left(-\frac{1}{8}\right)\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\sqrt{97}\left(-\frac{1}{8}\right)\sqrt{97}-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Apply the distributive property by multiplying each term of -2x-\frac{1}{4}\sqrt{97}+\frac{7}{4} by each term of x-\frac{1}{8}\sqrt{97}-\frac{7}{8}.
\frac{-2x^{2}-2x\left(-\frac{1}{8}\right)\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Multiply \sqrt{97} and \sqrt{97} to get 97.
\frac{-2x^{2}+\frac{-2\left(-1\right)}{8}x\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Express -2\left(-\frac{1}{8}\right) as a single fraction.
\frac{-2x^{2}+\frac{2}{8}x\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Multiply -2 and -1 to get 2.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}+\frac{-2\left(-7\right)}{8}x-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Express -2\left(-\frac{7}{8}\right) as a single fraction.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}+\frac{14}{8}x-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Multiply -2 and -7 to get 14.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}+\frac{7}{4}x-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Reduce the fraction \frac{14}{8} to lowest terms by extracting and canceling out 2.
\frac{-2x^{2}+\frac{7}{4}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Combine \frac{1}{4}x\sqrt{97} and -\frac{1}{4}\sqrt{97}x to get 0.
\frac{-2x^{2}+\frac{7}{4}x+\frac{-97}{4}\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Express -\frac{1}{4}\times 97 as a single fraction.
\frac{-2x^{2}+\frac{7}{4}x-\frac{97}{4}\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Fraction \frac{-97}{4} can be rewritten as -\frac{97}{4} by extracting the negative sign.
\frac{-2x^{2}+\frac{7}{4}x+\frac{-97\left(-1\right)}{4\times 8}-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Multiply -\frac{97}{4} times -\frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-2x^{2}+\frac{7}{4}x+\frac{97}{32}-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Do the multiplications in the fraction \frac{-97\left(-1\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{4}x+\frac{97}{32}+\frac{-\left(-7\right)}{4\times 8}\sqrt{97}+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Multiply -\frac{1}{4} times -\frac{7}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-2x^{2}+\frac{7}{4}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Do the multiplications in the fraction \frac{-\left(-7\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Combine \frac{7}{4}x and \frac{7}{4}x to get \frac{7}{2}x.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{7\left(-1\right)}{4\times 8}\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Multiply \frac{7}{4} times -\frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{-7}{32}\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Do the multiplications in the fraction \frac{7\left(-1\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}-\frac{7}{32}\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Fraction \frac{-7}{32} can be rewritten as -\frac{7}{32} by extracting the negative sign.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Combine \frac{7}{32}\sqrt{97} and -\frac{7}{32}\sqrt{97} to get 0.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7\left(-7\right)}{4\times 8}}{x}
Multiply \frac{7}{4} times -\frac{7}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{-49}{32}}{x}
Do the multiplications in the fraction \frac{7\left(-7\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}-\frac{49}{32}}{x}
Fraction \frac{-49}{32} can be rewritten as -\frac{49}{32} by extracting the negative sign.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97-49}{32}}{x}
Since \frac{97}{32} and \frac{49}{32} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{2}+\frac{7}{2}x+\frac{48}{32}}{x}
Subtract 49 from 97 to get 48.
\frac{-2x^{2}+\frac{7}{2}x+\frac{3}{2}}{x}
Reduce the fraction \frac{48}{32} to lowest terms by extracting and canceling out 16.
\frac{6\left(x+1\right)}{4x}-6+8+x\left(-2\right)
Factor the expressions that are not already factored in \frac{6x+6}{4x}.
\frac{3\left(x+1\right)}{2x}-6+8+x\left(-2\right)
Cancel out 2 in both numerator and denominator.
\frac{3\left(x+1\right)}{2x}+2+x\left(-2\right)
Add -6 and 8 to get 2.
\frac{3\left(x+1\right)}{2x}+\frac{\left(2+x\left(-2\right)\right)\times 2x}{2x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2+x\left(-2\right) times \frac{2x}{2x}.
\frac{3\left(x+1\right)+\left(2+x\left(-2\right)\right)\times 2x}{2x}
Since \frac{3\left(x+1\right)}{2x} and \frac{\left(2+x\left(-2\right)\right)\times 2x}{2x} have the same denominator, add them by adding their numerators.
\frac{3x+3+4x-4x^{2}}{2x}
Do the multiplications in 3\left(x+1\right)+\left(2+x\left(-2\right)\right)\times 2x.
\frac{7x+3-4x^{2}}{2x}
Combine like terms in 3x+3+4x-4x^{2}.
\frac{-4\left(x-\left(-\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{2x}
Factor the expressions that are not already factored in \frac{7x+3-4x^{2}}{2x}.
\frac{-2\left(x-\left(-\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{x}
Cancel out 2 in both numerator and denominator.
\frac{-2\left(x-\left(-\frac{1}{8}\sqrt{97}\right)-\frac{7}{8}\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{x}
To find the opposite of -\frac{1}{8}\sqrt{97}+\frac{7}{8}, find the opposite of each term.
\frac{-2\left(x+\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{x}
The opposite of -\frac{1}{8}\sqrt{97} is \frac{1}{8}\sqrt{97}.
\frac{-2\left(x+\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
To find the opposite of \frac{1}{8}\sqrt{97}+\frac{7}{8}, find the opposite of each term.
\frac{\left(-2x-2\times \frac{1}{8}\sqrt{97}-2\left(-\frac{7}{8}\right)\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Use the distributive property to multiply -2 by x+\frac{1}{8}\sqrt{97}-\frac{7}{8}.
\frac{\left(-2x+\frac{-2}{8}\sqrt{97}-2\left(-\frac{7}{8}\right)\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Multiply -2 and \frac{1}{8} to get \frac{-2}{8}.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}-2\left(-\frac{7}{8}\right)\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Reduce the fraction \frac{-2}{8} to lowest terms by extracting and canceling out 2.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}+\frac{-2\left(-7\right)}{8}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Express -2\left(-\frac{7}{8}\right) as a single fraction.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}+\frac{14}{8}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Multiply -2 and -7 to get 14.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}+\frac{7}{4}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Reduce the fraction \frac{14}{8} to lowest terms by extracting and canceling out 2.
\frac{-2x^{2}-2x\left(-\frac{1}{8}\right)\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\sqrt{97}\left(-\frac{1}{8}\right)\sqrt{97}-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Apply the distributive property by multiplying each term of -2x-\frac{1}{4}\sqrt{97}+\frac{7}{4} by each term of x-\frac{1}{8}\sqrt{97}-\frac{7}{8}.
\frac{-2x^{2}-2x\left(-\frac{1}{8}\right)\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Multiply \sqrt{97} and \sqrt{97} to get 97.
\frac{-2x^{2}+\frac{-2\left(-1\right)}{8}x\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Express -2\left(-\frac{1}{8}\right) as a single fraction.
\frac{-2x^{2}+\frac{2}{8}x\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Multiply -2 and -1 to get 2.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}+\frac{-2\left(-7\right)}{8}x-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Express -2\left(-\frac{7}{8}\right) as a single fraction.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}+\frac{14}{8}x-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Multiply -2 and -7 to get 14.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}+\frac{7}{4}x-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Reduce the fraction \frac{14}{8} to lowest terms by extracting and canceling out 2.
\frac{-2x^{2}+\frac{7}{4}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Combine \frac{1}{4}x\sqrt{97} and -\frac{1}{4}\sqrt{97}x to get 0.
\frac{-2x^{2}+\frac{7}{4}x+\frac{-97}{4}\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Express -\frac{1}{4}\times 97 as a single fraction.
\frac{-2x^{2}+\frac{7}{4}x-\frac{97}{4}\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Fraction \frac{-97}{4} can be rewritten as -\frac{97}{4} by extracting the negative sign.
\frac{-2x^{2}+\frac{7}{4}x+\frac{-97\left(-1\right)}{4\times 8}-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Multiply -\frac{97}{4} times -\frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-2x^{2}+\frac{7}{4}x+\frac{97}{32}-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Do the multiplications in the fraction \frac{-97\left(-1\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{4}x+\frac{97}{32}+\frac{-\left(-7\right)}{4\times 8}\sqrt{97}+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Multiply -\frac{1}{4} times -\frac{7}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-2x^{2}+\frac{7}{4}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Do the multiplications in the fraction \frac{-\left(-7\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Combine \frac{7}{4}x and \frac{7}{4}x to get \frac{7}{2}x.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{7\left(-1\right)}{4\times 8}\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Multiply \frac{7}{4} times -\frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{-7}{32}\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Do the multiplications in the fraction \frac{7\left(-1\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}-\frac{7}{32}\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Fraction \frac{-7}{32} can be rewritten as -\frac{7}{32} by extracting the negative sign.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Combine \frac{7}{32}\sqrt{97} and -\frac{7}{32}\sqrt{97} to get 0.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7\left(-7\right)}{4\times 8}}{x}
Multiply \frac{7}{4} times -\frac{7}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{-49}{32}}{x}
Do the multiplications in the fraction \frac{7\left(-7\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}-\frac{49}{32}}{x}
Fraction \frac{-49}{32} can be rewritten as -\frac{49}{32} by extracting the negative sign.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97-49}{32}}{x}
Since \frac{97}{32} and \frac{49}{32} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{2}+\frac{7}{2}x+\frac{48}{32}}{x}
Subtract 49 from 97 to get 48.
\frac{-2x^{2}+\frac{7}{2}x+\frac{3}{2}}{x}
Reduce the fraction \frac{48}{32} to lowest terms by extracting and canceling out 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}