Solve for x
x\in (-\infty,\frac{1}{3})\cup [\frac{7}{9},\infty)
Graph
Share
Copied to clipboard
\frac{6x+2}{3x-1}-\frac{5\left(3x-1\right)}{3x-1}\leq 0
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{3x-1}{3x-1}.
\frac{6x+2-5\left(3x-1\right)}{3x-1}\leq 0
Since \frac{6x+2}{3x-1} and \frac{5\left(3x-1\right)}{3x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{6x+2-15x+5}{3x-1}\leq 0
Do the multiplications in 6x+2-5\left(3x-1\right).
\frac{-9x+7}{3x-1}\leq 0
Combine like terms in 6x+2-15x+5.
7-9x\geq 0 3x-1<0
For the quotient to be ≤0, one of the values 7-9x and 3x-1 has to be ≥0, the other has to be ≤0, and 3x-1 cannot be zero. Consider the case when 7-9x\geq 0 and 3x-1 is negative.
x<\frac{1}{3}
The solution satisfying both inequalities is x<\frac{1}{3}.
7-9x\leq 0 3x-1>0
Consider the case when 7-9x\leq 0 and 3x-1 is positive.
x\geq \frac{7}{9}
The solution satisfying both inequalities is x\geq \frac{7}{9}.
x<\frac{1}{3}\text{; }x\geq \frac{7}{9}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}