Evaluate
\frac{13b}{6a}+4
Expand
\frac{13b}{6a}+4
Share
Copied to clipboard
\frac{2\left(6a+2b\right)}{6a}+\frac{3\left(3b+4a\right)}{6a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a and 2a is 6a. Multiply \frac{6a+2b}{3a} times \frac{2}{2}. Multiply \frac{3b+4a}{2a} times \frac{3}{3}.
\frac{2\left(6a+2b\right)+3\left(3b+4a\right)}{6a}
Since \frac{2\left(6a+2b\right)}{6a} and \frac{3\left(3b+4a\right)}{6a} have the same denominator, add them by adding their numerators.
\frac{12a+4b+9b+12a}{6a}
Do the multiplications in 2\left(6a+2b\right)+3\left(3b+4a\right).
\frac{24a+13b}{6a}
Combine like terms in 12a+4b+9b+12a.
\frac{2\left(6a+2b\right)}{6a}+\frac{3\left(3b+4a\right)}{6a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a and 2a is 6a. Multiply \frac{6a+2b}{3a} times \frac{2}{2}. Multiply \frac{3b+4a}{2a} times \frac{3}{3}.
\frac{2\left(6a+2b\right)+3\left(3b+4a\right)}{6a}
Since \frac{2\left(6a+2b\right)}{6a} and \frac{3\left(3b+4a\right)}{6a} have the same denominator, add them by adding their numerators.
\frac{12a+4b+9b+12a}{6a}
Do the multiplications in 2\left(6a+2b\right)+3\left(3b+4a\right).
\frac{24a+13b}{6a}
Combine like terms in 12a+4b+9b+12a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}