Evaluate
-\frac{10\sqrt{2}}{51}\approx -0.277296777
Share
Copied to clipboard
\frac{-2}{\frac{51}{\sqrt{50}}}
Subtract 70 from 68 to get -2.
\frac{-2}{\frac{51}{5\sqrt{2}}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{-2}{\frac{51\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{51}{5\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{-2}{\frac{51\sqrt{2}}{5\times 2}}
The square of \sqrt{2} is 2.
\frac{-2}{\frac{51\sqrt{2}}{10}}
Multiply 5 and 2 to get 10.
\frac{-2\times 10}{51\sqrt{2}}
Divide -2 by \frac{51\sqrt{2}}{10} by multiplying -2 by the reciprocal of \frac{51\sqrt{2}}{10}.
\frac{-2\times 10\sqrt{2}}{51\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{-2\times 10}{51\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{-2\times 10\sqrt{2}}{51\times 2}
The square of \sqrt{2} is 2.
\frac{-20\sqrt{2}}{51\times 2}
Multiply -2 and 10 to get -20.
\frac{-20\sqrt{2}}{102}
Multiply 51 and 2 to get 102.
-\frac{10}{51}\sqrt{2}
Divide -20\sqrt{2} by 102 to get -\frac{10}{51}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}