Evaluate
\frac{17}{14}\approx 1.214285714
Factor
\frac{17}{2 \cdot 7} = 1\frac{3}{14} = 1.2142857142857142
Share
Copied to clipboard
\begin{array}{l}\phantom{56)}\phantom{1}\\56\overline{)68}\\\end{array}
Use the 1^{st} digit 6 from dividend 68
\begin{array}{l}\phantom{56)}0\phantom{2}\\56\overline{)68}\\\end{array}
Since 6 is less than 56, use the next digit 8 from dividend 68 and add 0 to the quotient
\begin{array}{l}\phantom{56)}0\phantom{3}\\56\overline{)68}\\\end{array}
Use the 2^{nd} digit 8 from dividend 68
\begin{array}{l}\phantom{56)}01\phantom{4}\\56\overline{)68}\\\phantom{56)}\underline{\phantom{}56\phantom{}}\\\phantom{56)}12\\\end{array}
Find closest multiple of 56 to 68. We see that 1 \times 56 = 56 is the nearest. Now subtract 56 from 68 to get reminder 12. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }12
Since 12 is less than 56, stop the division. The reminder is 12. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}