Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{6626\times 10^{\left(-34\right)^{1}}}{4\times 314\times 10^{-7}}
To multiply powers of the same base, add their exponents. Add -2 and -5 to get -7.
\frac{3313\times 10^{\left(-34\right)^{1}}}{2\times 314\times 10^{-7}}
Cancel out 2 in both numerator and denominator.
\frac{3313\times 10^{-34}}{2\times 314\times 10^{-7}}
Calculate -34 to the power of 1 and get -34.
\frac{3313\times \frac{1}{10000000000000000000000000000000000}}{2\times 314\times 10^{-7}}
Calculate 10 to the power of -34 and get \frac{1}{10000000000000000000000000000000000}.
\frac{\frac{3313}{10000000000000000000000000000000000}}{2\times 314\times 10^{-7}}
Multiply 3313 and \frac{1}{10000000000000000000000000000000000} to get \frac{3313}{10000000000000000000000000000000000}.
\frac{\frac{3313}{10000000000000000000000000000000000}}{628\times 10^{-7}}
Multiply 2 and 314 to get 628.
\frac{\frac{3313}{10000000000000000000000000000000000}}{628\times \frac{1}{10000000}}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\frac{\frac{3313}{10000000000000000000000000000000000}}{\frac{157}{2500000}}
Multiply 628 and \frac{1}{10000000} to get \frac{157}{2500000}.
\frac{3313}{10000000000000000000000000000000000}\times \frac{2500000}{157}
Divide \frac{3313}{10000000000000000000000000000000000} by \frac{157}{2500000} by multiplying \frac{3313}{10000000000000000000000000000000000} by the reciprocal of \frac{157}{2500000}.
\frac{3313}{628000000000000000000000000000}
Multiply \frac{3313}{10000000000000000000000000000000000} and \frac{2500000}{157} to get \frac{3313}{628000000000000000000000000000}.